Текущий выпуск Номер 6, 2025 Том 17

Все выпуски

Результаты поиска по 'параметр порядка':
Найдено статей: 80
  1. Данилова М.Ю., Малиновский Г.С.
    Метод тяжелого шарика с усреднением
    Компьютерные исследования и моделирование, 2022, т. 14, № 2, с. 277-308

    Методы оптимизации первого порядка являются важным рабочим инструментов для широкого спектра современных приложений в разных областях, среди которых можно выделить экономику, физику, биологию, машинное обучение и управление. Среди методов первого порядка особого внимания заслуживают ускоренные (моментные) методы в силу их практической эффективности. Метод тяжелого шарика (heavy-ball method — HB) — один из первых ускоренных методов. Данный метод был разработан в 1964 г., и для него был проведен анализ сходимости для квадратичных сильно выпуклых функций. С тех пор были предложены и проанализированы разные варианты HB. В частности, HB известен своей простотой реализации и эффективностью при решении невыпуклых задач. Однако, как и другие моментные методы, он имеет немонотонное поведение; более того, при сходимости HB с оптимальными параметрами наблюдается нежелательное явление, называемое пик-эффектом. Чтобы решить эту проблему, в этой статье мы рассматриваем усредненную версию метода тяжелого шарика (averaged heavy-ball method — AHB). Мы показываем, что для квадратичных задач AHB имеет меньшее максимальное отклонение от решения, чем HB. Кроме того, для общих выпуклых и сильно выпуклых функций доказаны неускоренные скорости глобальной сходимости AHB, его версии WAHB cо взвешенным усреднением, а также для AHB с рестартами R-AHB. Насколько нам известно, такие гарантии для HB с усреднением не были явно доказаны для сильно выпуклых задач в существующих работах. Наконец, мы проводим несколько численных экспериментов для минимизации квадратичных и неквадратичных функций, чтобы продемонстрировать преимущества использования усреднения для HB. Кроме того, мы также протестировали еще одну модификацию AHB, называемую методом tail-averaged heavy-ball (TAHB). В экспериментах мы наблюдали, что HB с правильно настроенной схемой усреднения сходится быстрее, чем HB без усреднения, и имеет меньшие осцилляции.

  2. Батгэрэл Б., Земляная Е.В., Пузынин И.В.
    Программа NINE: численное решение граничных задач для нелинейных дифференциальных уравнений методом НАМН
    Компьютерные исследования и моделирование, 2012, т. 4, № 2, с. 315-324

    Представлена программа NINE (Newtonian Iteration for Nonlinear Equation) численного решения граничных задач для нелинейных дифференциальных уравнений второго порядка на основе непрерывного аналога метода Ньютона (НАМН) с использованием нумеровской конечно-разностной аппроксимации четвертого порядка относительно шага дискретизации по пространственной переменной. Обсуждаются алгоритмы вычисления ньютоновского итерационного параметра. Выполнены методические расчеты, демонстрирующие влияние выбора итерационного параметра на сходимость итерационного процесса. Представлены результаты проведенного с помощью программы NINE численного исследования положительных частицеподобных решений уравнения скалярного поля.

    Просмотров за год: 1. Цитирований: 1 (РИНЦ).
  3. Андреева А.А., Николаев А.В., Лобанов А.И.
    Исследование точечной математической модели полимеризации фибрина
    Компьютерные исследования и моделирование, 2017, т. 9, № 2, с. 247-258

    Функциональное моделирование процессов свертывания крови, в частности возникновения фибрин–полимерных сгустков, имеет большое значение для прикладных вопросов медицинской биофизики. Несмотря на некоторые неточности в математических моделях, качественные результаты представляют огромный интерес для экспериментаторов как средство анализа возможных вариантов развития их работ. При достижении хорошего количественного совпадения с экспериментальными результатами такие модели могут быть использованы для технологических применений. Целью данной работы является моделирование процесса многоступенчатой полимеризации фибрина и сопряженного с ними золь-гель-перехода — возникновения фибрин-полимерной сетки в точечной системе. Для программной реализации и численных экспериментов используется неявный метод Розенброка второго порядка с комплексными коэффициентами (CROS). В работе представлены результаты моделирования и проведен анализ чувствительности численных решений к коэффициентам математической модели методами вариации. Показано, что в физиологическом диапазоне параметров констант модели существует лаг-период 20 секунд между началом реакции и возникновением зародышей фибрин-полимерной сетки, что хорошо соответствует экспериментальным наблюдениям подобных систем. Показана возможность появления нескольких $(n = 1–3)$ последовательных золь-гель-переходов. Такое необычное поведение системы является прямым следствием наличия нескольких фаз в процессе полимеризации фибрина. На последнем этапе раствор олигомеров фибрина длины 10 может достичь полуразбавленного состояния. Это, в свою очередь, приведет к исключительно быстрой кинетике формирования фибрин-полимерной сетки, управляемой вращательной диффузией олигомеров. Если же состояние полуразбавленного раствора не достигается, то образование фибрин-полимерной сетки контролируется трансляционной диффузией, которая является существенно более медленным процессом. Такой дуализм в процессе золь-гель-перехода привел к необходимости введения функции переключения в уравнения для кинетики образования фибрин-полимера. Ситуация с последовательными золь-гель-переходами соответствует экспериментальным системам, где вследствие физических процессов, таких как пресипитация, фибрин-полимерная сетка может быть быстро удалена из объема.

    Просмотров за год: 8.
  4. Голубев В.И., Хохлов Н.И.
    Оценка анизотропии сейсмического отклика от трещиноватых геологических объектов
    Компьютерные исследования и моделирование, 2018, т. 10, № 2, с. 231-240

    Сейсмическая разведка является наиболее распространённым методом поиска и разведки месторождений полезных ископаемых: нефти и природного газа. Зародившись в начале XX века, она получила значительное развитие и в настоящий момент используется практически всеми сервисными нефтяными компаниями. Основными ее преимуществами являются приемлемая стоимость проведения полевых работ (по сравнению с бурением скважин) и точность восстановления характеристик подповерхностного пространства. Однако с открытием нетрадиционных месторождений (например, Арктический шельф, Баженовская свита) актуальной стала задача усовершенствования существующих и создания новых технологий обработки сейсмических данных. Значительное развитие в данном направлении возможно с использованием численного моделирования распространения сейсмических волн в реалистичных моделях геологического массива, поскольку реализуется возможность задания произвольной внутренней структуры среды с последующей оценкой синтетического сигнала-отклика.

    Настоящая работа посвящена исследованию пространственных динамических процессов, протекающих в геологических средах, содержащих трещиноватые включения, в процессе сейсмической разведки. Авторами построена трехмерная модель слоистого массива, содержащего пласт из флюидонасыщенных трещин, позволяющая оценить сигнал-отклик при варьировании структуры неоднородного включения. Для описания физических процессов используется система уравнений линейно-упругого тела в частных производных второго порядка, которая решается численно сеточно-характеристическим методом на гексаэдральных расчетных сетках. При этом плоскости трещин выделяются на этапе построения расчетной сетки, в дальнейшем используется дополнительная корректировка, обеспечивающая корректный сейсмический отклик для параметров модели, характерных для геологических сред.

    В работе получены площадные трехкомпонентные сейсмограммы с общим пунктом взрыва. На их основе проведена оценка влияния структуры трещиноватой среды на анизотропию сейсмического отклика, регистрируемого на дневной поверхности на различном удалении от источника. Установлено, что кинематические характеристики сигнала остаются постоянными, тогда как динамические характеристики для упорядоченных и неупорядоченных моделей могут различаться на десятки процентов.

    Просмотров за год: 11. Цитирований: 4 (РИНЦ).
  5. Двуреченский П.Е.
    Градиентный метод с неточным оракулом для задач композитной невыпуклой оптимизации
    Компьютерные исследования и моделирование, 2022, т. 14, № 2, с. 321-334

    В этой статье мы предлагаем новый метод первого порядка для композитных невыпуклых задач минимизации с простыми ограничениями и неточным оракулом. Целевая функция задается как сумма «сложной», возможно, невыпуклой части с неточным оракулом и «простой» выпуклой части. Мы обобщаем понятие неточного оракула для выпуклых функций на случай невыпуклых функций. Неформально говоря, неточность оракула означает, что для «сложной» части в любой точке можно приближенно вычислить значение функции и построить квадратичную функцию, которая приближенно ограничивает эту функцию сверху. Рассматривается два возможных типа ошибки: контролируемая, которая может быть сде- лана сколь угодно маленькой, например, за счет решения вспомогательной задачи, и неконтролируемая. Примерами такой неточности являются: гладкие невыпуклые функции с неточным и непрерывным по Гёльдеру градиентом, функции, заданные вспомогательной равномерно вогнутой задачей максимизации, которая может быть решена лишь приближенно. Для введенного класса задачм ы предлагаем метод типа проекции градиента / зеркального спуска, который позволяет использовать различные прокс-функции для задания неевклидовой проекции на допустимое множество и более гибкой адаптации к геометрии допустимого множества; адаптивно выбирает контролируемую ошибку оракула и ошибку неевклидового проектирования; допускает неточное проксимальное отображение с двумя типами ошибки: контролируемой и неконтролируемой. Мы доказываем скорость сходимости нашего метода в терминах нормы обобщенного градиентного отображения и показываем, что в случае неточного непрерывного по Гёльдеру градиента наш метод является универсальным по отношению к параметру и константе Гёльдера. Это означает, что методу не нужно знание этих параметров для работы. При этом полученная оценка сложности является равномерно наилучшей при всех параметрах Гёльдера. Наконец, в частном случае показано, что малое значение нормы обобщенного градиентного отображения в точке означает, что в этой точке приближенно выполняется необходимое условие локального минимума.

  6. Нгуен Б.Х., Ха Д.Т., Цибулин В.Г.
    Мультистабильность для системы трех конкурирующих видов
    Компьютерные исследования и моделирование, 2022, т. 14, № 6, с. 1325-1342

    Проводится исследование вольтерровской модели, описывающей конкуренцию трех видов. Соответствующая система дифференциальных уравнений первого порядка с квадратичной правой частью после замены переменных сводится к системе с восемью параметрами. Два из них характеризуют скорости роста популяций, для первого вида этот параметр принят равным единице. Остальные шесть коэффициентов задают матрицу взаимодействий видов. Ранее при аналитическом исследовании так называемых симметричной модели [May, Leonard, 1975] и асимметричной модели [Chi, Wu, Hsu, 1998] с коэффициентами роста, равными единице, были установлены соотношения на коэффициенты взаимодействия, при которых система имеет однопараметрическое семейство предельных циклов. В данной работе проведено численно-аналитическое исследование полной системы на основе косимметричного подхода, позволившего определить соотношения на параметры, которым отвечают семейства равновесий. Получены различные варианты однопараметрических семейств и показано, что они могут состоять как из устойчивых, так и из неустойчивых равновесий. В случае матрицы взаимодействий с единичными коэффициентами найдены мультикосимметрия системы и двухпараметрическое семейство равновесий, существующее при любых коэффициентах роста. Для различных коэффициентов взаимодействия найдены значения параметров роста, при которых реализуются периодические режимы. Их принадлежность семейству предельных циклов подтверждена расчетом мультипликаторов. В широком диапазоне значений, нарушающих соотношения, при которых обеспечивается существование циклов, получается типичное при разрушении косимметрии медленное колебательное установление. Приведены примеры, когда фиксированному значению одного параметра роста отвечают два значения другого параметра, так что существуют разные семейства периодических режимов. Таким образом, установлена вариативность сценариев развития трехвидовой системы.

  7. Во второй части работы представлены численные исследования параметров нижней ионосферы на высотах 40–90 км при воздействии на нее мощного потока коротковолнового радиоизлучения различной частоты и мощности. Постановка задачи изложена в первой части работы. Основное внимание уделяется взаимосвязи энергетических и кинетических параметров возмущенной $D$-области ионосферы в процессах, определяющих поглощение и трансформацию потока энергии радиолуча в пространстве и во времени. Показана возможность существенного различия в поведении параметров возмущенной области в дневное и ночное время как по величине, так и по пространственно-временному распределению. Ввиду отсутствия надежных значений констант скоростей ряда важных кинетических процессов численные исследования велись поэтапно, с постепенным добавлением отдельных процессов и кинетических блоков, соответствующих вместе с тем определенному физическому содержанию. Показано, что главную роль при этом играют энергетические пороги для неупругих столкновений электронов с молекулами воздуха. Данный подход позволил обнаружить эффект возникновения автоколебательного режима изменения параметров, если главным каналом для потерь энергии в неупругих процессах является наиболее энергоемкий процесс — ионизация. Этот эффект может играть роль при плазменных исследованиях с использованием высокочастотных индукционных и емкостных разрядов. Представлены результаты расчетов ионизационных и оптических параметров возмущенной $D$-области для дневных условий. Получены значения электронной температуры, концентрации, коэффициентов излучения в видимом и инфракрасном диапазонах спектра для различных значений мощности радиолуча и его частоты в нижней ионосфере. Получено высотно-временное распределение поглощенной мощности излучения, что необходимо при исследованиях более высоких слоев ионосферы. Подробно исследовано влияние на электронную температуру и на общее поведение параметров энергии, которая расходуется электронами на возбуждение колебательных и метастабильных состояний молекул. Показано, что в ночных условиях, когда нижняя граница электронной концентрации поднимается до 80 км, а концентрация тяжелых частиц снижается на два порядка по сравнению со средней областью $D$-слоя, при достаточной мощности радиоизлучения может развиваться крупномасштабное газодинамическое движение. На основе численной схемы Мак-Кормака разработан алгоритм и выполненыдв умерные газодинамические расчетып оведения параметров возмущенной области при определенных упрощениях кинетической части задачи.

  8. Изучается приближенная математическая модель кровотока в осесимметричном кровеносном сосуде. Под таким сосудом понимается бесконечно длинный круговой цилиндр, стенки которого состоят из упругих колец. Кровь рассматривается как несжимаемая жидкость, текущая в этом цилиндре. Повышенное давление вызывает радиально-симметричное растяжение упругих колец. Следуя Дж. Лэму, кольца расположены близко друг к другу так, что жидкость между ними не протекает. Для мысленной реализации этого достаточно предположить, что кольца обтянуты непроницаемой пленкой, не обладающей упругими свойствами. Упругостью обладают лишь кольца. Рассматриваемая модель кровотока в кровеносном сосуде состоит из трех уравнений: уравнения неразрывности, закона сохранения количества движения и уравнения состояния. Рассматривается приближенная процедура сведения рассматриваемых уравнений к уравнению Кортевега – де Фриза (КдФ), которая рассмотрена Дж. Лэмом не в полной мере, лишь для установления зависимости коэффициентов уравнения КдФ от физических параметров рассматриваемой модели течения несжимаемого флюида в осесимметричном сосуде. Из уравнения КдФ стандартным переходом к бегущим волнам получаются ОДУ третьего, второго и первого порядка соответственно. В зависимости от различных случаев расположения трех стационарных решений ОДУ первого порядка стандартно получаются кноидальная волна и солитон. Основное внимание уделено неограниченному периодическому решению, которое названо нами вырожденной кноидальной волной. Математически кноидальные волны описываются эллиптическими интегралами с параметрами, определяющими амплитуды и периоды. Солитон и вырожденная кноидальная волна описываются элементарными функциями. Указан гемодинамический смысл этих видов решений. Благодаря тому, что множества решений ОДУ первого, второго и третьего порядков не совпадают, установлено, что задачу Коши для ОДУ второго и третьего порядков можно задавать во всех точках, а для ОДУ первого порядка — лишь в точках роста или убывания. Задачу Коши для ОДУ первого порядка нельзя задавать в точках экстремума благодаря нарушению условия Липшица. Численно проиллюстрировано перерождение кноидальной волны в вырожденную кноидальную волну, которая может привести к разрыву стенок сосуда. Приведенная таблица описывает два режима приближения кноидальной волны к вырожденной кноидальной волне.

  9. Курушина С.Е., Федорова Е.А., Гуровская Ю.А.
    Методика анализа шумоиндуцированных явлений в двухкомпонентных стохастических системах реакционно-диффузионного типа со степенной нелинейностью
    Компьютерные исследования и моделирование, 2025, т. 17, № 2, с. 277-291

    В работе построена и исследуется обобщенная модель, описывающая двухкомпонентные системы реакционно-диффузионного типа со степенной нелинейностью и учитывающая влияние внешних шумов. Для анализа обобщенной модели разработана методология, включающая в себя линейный анализ устойчивости, нелинейный анализ устойчивости и численное моделирование эволюции системы. Методика проведения линейного анализа опирается на базовые подходы, в которых для получения характеристического уравнения используется матрица линеаризации. Нелинейный анализ устойчивости проводится с точностью до моментов третьего порядка включительно. Для этого функции, описывающие динамику компонент, раскладываются в ряд Тейлора до слагаемых третьего порядка. Затем с помощью теоремы Новикова проводится процедура усреднения. В результате полученные уравнения образуют бесконечную иерархично подчиненную структуру, которую в определенный момент необходимо прервать. Для этого пренебрегаем вкладом слагаемых выше третьего порядка как в самих уравнениях, так и при построении уравнений моментов. Полученные уравнения образуют набор линейных уравнений, из которых формируется матрица устойчивости. Эта матрица имеет довольно сложную структуру, в связи с чем ее решение может быть получено только численно. Для проведения численного исследования эволюции системы выбран метод переменных направлений. Из-за наличия в анализируемой системе стохастической части метод был модифицирован таким образом, что на целых слоях проводится генерация случайных полей с заданным распределением и функцией корреляции, отвечающих за шумовой вклад в общую нелинейность. Апробация разработанной методологии проведена на предложенной Barrio et al. модели реакции – диффузии, по результатам исследования которой им показана схожесть получаемых структур с пигментацией рыб. В настоящей работе внимание сосредоточено на анализе поведения системы в окрестности ненулевой стационарной точки. Изучена зависимость действительной части собственных значений от волнового числа. В линейном анализе получена область значений волновых чисел, при которых возникает неустойчивость Тьюринга. Нелинейный анализ и численное моделирование эволюции системы проводятся для параметров модели, которые, напротив, находятся вне области неустойчивости Тьюринга. В рамках нелинейного анализа найдены интенсивности аддитивного шума, при которых, несмотря на отсутствие условий для возникновения диффузионной неустойчивости, система переходит в неустойчивое состояние. Результаты численного моделирования эволюции апробируемой модели демонстрируют процесс образования пространственных структур тьюрингового типа при воздействии на нее аддитивного шума.

  10. Айнбиндер Р.М., Рассадин А.Э.
    О миграции популяции по экологической нише с пространственно неоднородной локальной емкостью
    Компьютерные исследования и моделирование, 2025, т. 17, № 3, с. 483-500

    Статья посвящена описанию процесса миграции некоторой популяции с учетом пространственной неоднородности локальной емкости экологической ниши. Предполагается, что эта пространственная неоднородность обусловлена различными природными или искусственными факторами. Математическая модель рассматриваемого процесса миграции представляет собой задачу Коши на прямой для некоторого квазилинейного уравнения в частных производных первого порядка, которому удовлетворяет линейная плотность численности рассматриваемой популяции. В данной работе найдено общее решение этой задачи Коши для произвольной зависимости локальной емкости экологической ниши от пространственной координаты. Это общее решение было применено для описания миграции рассматриваемой популяции в двух различных случаях: в случае зависимости локальной емкости экологической ниши от пространственной координаты в виде гладкой ступеньки и в случае холмообразной зависимости локальной емкости экологической ниши от пространственной координаты. В обоих случаях решение задачи Коши выражается через высшие трансцендентные функции. Наложением специальных соотношений на параметры модели эти высшие трансцендентные функции сводятся к элементарным функциям, что позволяет получить точные решения модели в явном виде, выраженные через элементарные функции. С помощью этих точных решений реализована обширная программа вычислительных экспериментов, показывающих, как начальная плотность популяции гауссовской формы рассеивается на рассмотренных двух видах пространственной неоднородности локальной емкости экологической ниши. Эти вычислительные эксперименты показали, что при прохождении и через ступенеобразную, и через холмообразную пространственную неоднородность локальной емкости экологической ниши с узкой, по сравнению с характерным пространственным масштабом этих неоднородностей, шириной гауссоиды ее начальной плотности система забывает свое начальное состояние. В частности, если интерпретировать исследуемую систему как популяцию, обитающую в протяженной спокойной прямолинейной реке вдоль ее русла, то можно утверждать, что при таком начальном условии после того, как течение этой реки пронесет рассматриваемую популяцию через область пространственной неоднородности локальной емкости экологической ниши, плотность численности популяции становится квазипрямоугольной функцией.

Страницы: « первая предыдущая следующая последняя »

Журнал индексируется в Scopus

Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"

Международная Междисциплинарная Конференция МАТЕМАТИКА. КОМПЬЮТЕР. ОБРАЗОВАНИЕ.