Текущий выпуск Номер 5, 2025 Том 17

Все выпуски

Результаты поиска по 'оптимизация':
Найдено статей: 154
  1. Алпатов А.В., Петерс Е.А., Пасечнюк Д.А., Райгородский А.М.
    Стохастическая оптимизация в задаче цифрового предыскажения сигнала
    Компьютерные исследования и моделирование, 2022, т. 14, № 2, с. 399-416

    В данной статье осуществляется сравнение эффективности некоторых современных методов и практик стохастической оптимизации применительно к задаче цифрового предыскажения сигнала (DPD), которое является важной составляющей процесса обработки сигнала на базовых станциях, обеспечивающих беспроводную связь. В частности, рассматривается два круга вопросов о возможностях применения стохастических методов для обучения моделей класса Винера – Гаммерштейна в рамках подхода минимизации эмпирического риска: касательно улучшения глубины и скорости сходимости данного метода оптимизации и относительно близости самой постановки задачи (выбранной модели симуляции) к наблюдаемому в действительности поведению устройства. Так, в первой части этого исследования внимание будет сосредоточено на вопросе о нахождении наиболее эффективного метода оптимизации и дополнительных к нему модификаций. Во второй части предлагается новая квази-онлайн-постановка задачи и, соответственно, среда для тестирования эффективности методов, благодаря которым результаты численного моделирования удается привести в соответствие с поведением реального прототипа устройства DPD. В рамках этой новой постановки далее осуществляется повторное тестирование некоторых избранных практик, более подробно рассмотренных в первой части исследования, и также обнаруживаются и подчеркиваются преимущества нового лидирующего метода оптимизации, оказывающегося теперь также наиболее эффективным и в практических тестах. Для конкретной рассмотренной модели максимально достигнутое улучшение глубины сходимости составило 7% в стандартном режиме и 5% в онлайн-постановке (при том что метрика сама по себе имеет логарифмическую шкалу). Также благодаря дополнительным техникам оказывается возможным сократить время обучения модели DPD вдвое, сохранив улучшение глубины сходимости на 3% и 6% для стандартного и онлайн-режимов соответственно. Все сравнения производятся с методом оптимизации Adam, который был отмечен как лучший стохастический метод для задачи DPD из рассматриваемых в предшествующей работе [Pasechnyuk et al., 2021], и с методом оптимизации Adamax, который оказывается наиболее эффективным в предлагаемом онлайн-режиме.

  2. Плетнев Н.В., Двуреченский П.Е., Гасников А.В.
    Применение градиентных методов оптимизации для решения задачи Коши для уравнения Гельмгольца
    Компьютерные исследования и моделирование, 2022, т. 14, № 2, с. 417-444

    Статья посвящена изучению применения методов выпуклой оптимизации для решения задачи Коши для уравнения Гельмгольца, которая является некорректной, поскольку уравнение относится к эллиптическому типу. Задача Коши формулируется как обратная задача и сводится к задаче выпуклой оптимизации в гильбертовом пространстве. Оптимизируемый функционал и его градиент вычисляются с помощью решения краевых задач, которые, в свою очередь, корректны и могут быть приближенно решены стандартными численными методами, такими как конечно-разностные схемы и разложения в ряды Фурье. Экспериментально исследуются сходимость применяемого быстрого градиентного метода и качество получаемого таким образом решения. Эксперимент показывает, что ускоренный градиентный метод — метод подобных треугольников — сходится быстрее, чем неускоренный метод. Сформулированы и доказаны теоремы о вычислительной сложности полученных алгоритмов. Установлено, что разложения в ряды Фурье превосходят конечно-разностные схемы по скорости вычислений и улучшают качество получаемого решения. Сделана попытка использовать рестарты метода подобных треугольников после уменьшения невязки функционала вдвое. В этом случае сходимость не улучшается, что подтверждает отсутствие сильной выпуклости. Эксперименты показывают, что неточность вычислений более адекватно описывается аддитивной концепцией шума в оракуле первого порядка. Этот фактор ограничивает достижимое качество решения, но ошибка не накапливается. Полученные результаты показывают, что использование ускоренных градиентных методов оптимизации позволяет эффективно решать обратные задачи.

  3. Томинин Я.Д., Томинин В.Д., Бородич Е.Д., Ковалев Д.А., Двуреченский П.Е., Гасников А.В., Чуканов С.В.
    Об ускоренных методах для седловых задач с композитной структурой
    Компьютерные исследования и моделирование, 2023, т. 15, № 2, с. 433-467

    В данной работе рассматриваются сильно-выпукло сильно-вогнутые не билинейные седловые задачи с разными числами обусловленности по прямым и двойственным переменным. Во-первых, мы рассматриваем задачи с гладкими композитами, один из которых имеет структуру с конечной суммой. Для этой задачи мы предлагаем алгоритм уменьшения дисперсии с оценками сложности, превосходящими существующие ограничения в литературе. Во-вторых, мы рассматриваем седловые задачи конечной суммы с композитами и предлагаем несколько алгоритмов в зависимости от свойств составных членов. Когда составные члены являются гладкими, мы получаем лучшие оценки сложности, чем в литературе, включая оценки недавно предложенных почти оптимальных алгоритмов, которые не учитывают составную структуру задачи. Кроме того, наши алгоритмы позволяют разделить сложность, т. е. оценить для каждой функции в задаче количество вызовов оракула, достаточное для достижения заданной точности. Это важно, так как разные функции могут иметь разную арифметическую сложность оракула, а дорогие оракулы желательно вызывать реже, чем дешевые. Ключевым моментом во всех этих результатах является наша общая схема для седловых задач, которая может представлять самостоятельный интерес. Эта структура, в свою очередь, основана на предложенном нами ускоренном мета-алгоритме для композитной оптимизации с вероятностными неточными оракулами и вероятностной неточностью в проксимальном отображении, которые также могут представлять самостоятельный интерес.

  4. Савчук О.С., Титов А.А., Стонякин Ф.С., Алкуса М.С.
    Адаптивные методы первого порядка для относительносильновыпуклых задач оптимизации
    Компьютерные исследования и моделирование, 2022, т. 14, № 2, с. 445-472

    Настоящая статья посвящена некоторым адаптивным методам первого порядка для оптимизационных задач с относительно сильно выпуклыми функционалами. Недавно возникшее в оптимизации понятие относительной сильной выпуклости существенно расширяет класс выпуклых задач посредством замены в определении евклидовой нормы расстоянием в более общем смысле (точнее — расхождением или дивергенцией Брегмана). Важная особенность рассматриваемых в настоящей работе классов задач — обобщение стандартных требований к уровню гладкости целевых функционалов. Точнее говоря, рассматриваются относительно гладкие и относительно липшицевые целевые функционалы. Это может позволить применять рассматриваемую методику для решения многих прикладных задач, среди которых можно выделить задачу о нахождении общей точки системы эллипсоидов, а также задачу бинарной классификации с помощью метода опорных векторов. Если целевой функционал минимизационной задачи выпуклый, то условие относительной сильной выпуклости можно получить посредством регуляризации. В предлагаемой работе впервые предложены адаптивные методы градиентного типа для задач оптимизации с относительно сильно выпуклыми и относительно липшицевыми функционалами. Далее, в статье предложены универсальные методы для относительно сильно выпуклых задач оптимизации. Указанная методика основана на введении искусственной неточности в оптимизационную модель. Это позволило обосновать применимость предложенных методов на классе относительно гладких, так и на классе относительно липшицевых функционалов. При этом показано, как можно реализовать одновременно адаптивную настройку на значения параметров, соответствующих как гладкости задачи, так и введенной в оптимизационную модель искусственной неточности. Более того, показана оптимальность оценок сложности с точностью до умножения на константу для рассмотренных в работе универсальных методов градиентного типа для обоих классов относительно сильно выпуклых задач. Также в статье для задач выпуклого программирования с относительно липшицевыми функционалами обоснована возможность использования специальной схемы рестартов алгоритма зеркального спуска и доказана оптимальная оценка сложности такого алгоритма. Также приводятся результаты некоторых вычислительных экспериментов для сравнения работы предложенных в статье методов и анализируется целесообразность их применения.

  5. Сокрытие информации в цифровых изображениях является перспективным направлением кибербезопасности. Методы стеганографии обеспечивают незаметную передачу данных по открытому каналу связи втайне от злоумышленника. Эффективность встраивания информации зависит от того, насколько незаметным и робастным является скрытое вложение, а также от емкости встраивания. Однако показатели качества встраивания являются взаимно обратными и улучшение значения одного из них обычно приводит к ухудшению остальных. Баланс между ними может быть достигнут с помощью применения метаэвристической оптимизации. Метаэвристики позволяют находить оптимальные или близкие к ним решения для многих задач, в том числе трудно формализуемых, моделируя разные природные процессы, например эволюцию видов или поведение животных. В этой статье предлагается новый подход к сокрытию данных в гибридном пространственно-частотном домене цифровых изображений на основе метаэвристической оптимизации. В качестве операции встраивания выбрано изменение блока пикселей изображения в соответствии с некоторой матрицей изменений. Матрица изменений выбирается адаптивно для каждого блока с помощью алгоритмов метаэвристической оптимизации. В работе сравнивается эффективность трех метаэвристик, таких как генетический алгоритм (ГА), оптимизация роя частиц (ОРЧ) и дифференциальная эволюция (ДЭ), для поиска лучшей матрицы изменений. Результаты экспериментов показывают, что новый подход обеспечивает высокую незаметность встраивания, высокую емкость и безошибочное извлечение встроенной информации. При этом хранение и передача матриц изменений для каждого блока не требуются для извлечения данных, что уменьшает вероятность обнаружения скрытого вложения злоумышленником. Метаэвристики обеспечили прирост показателей незаметности и емкости по сравнению с предшествующим алгоритмом встраивания данных в коэффициенты дискретного косинусного преобразования по методу QIM [Evsutin, Melman, Meshcheryakov, 2021] соответственно на 26,02% и 30,18% для ГА, на 26,01% и 19,39% для ОРЧ, на 27,30% и 28,73% для ДЭ.

  6. Чэнь Ц., Лобанов А.В., Рогозин А.В.
    Решение негладких распределенных минимаксных задач с применением техники сглаживания
    Компьютерные исследования и моделирование, 2023, т. 15, № 2, с. 469-480

    Распределенные седловые задачи имеют множество различных приложений в оптимизации, теории игр и машинном обучении. Например, обучение генеративных состязательных сетей может быть представлено как минимаксная задача, а также задача обучения линейных моделей с регуляризатором может быть переписана как задача поиска седловой точки. В данной статье исследуются распределенные негладкие седловые задачи с липшицевыми целевыми функциями (возможно, недифференцируемыми). Целевая функция представляется в виде суммы нескольких слагаемых, распределенных между группой вычислительных узлов. Каждый узел имеет доступ к локально хранимой функции. Узлы, или агенты, обмениваются информацией через некоторую коммуникационную сеть, которая может быть централизованной или децентрализованной. В централизованной сети есть универсальный агрегатор информации (сервер или центральный узел), который напрямую взаимодействует с каждым из агентов и, следовательно, может координировать процесс оптимизации. В децентрализованной сети все узлы равноправны, серверный узел отсутствует, и каждый агент может общаться только со своими непосредственными соседями.

    Мы предполагаем, что каждый из узлов локально хранит свою целевую функцию и может вычислить ее значение в заданных точках, т. е. имеет доступ к оракулу нулевого порядка. Информация нулевого порядка используется, когда градиент функции является трудно вычислимым, а также когда его невозможно вычислить или когда функция не дифференцируема. Например, в задачах обучения с подкреплением необходимо сгенерировать траекторию для оценки текущей стратегии. Этот процесс генерирования траектории и оценки политики можно интерпретировать как вычисление значения функции. Мы предлагаем подход, использующий технику сглаживания, т. е. применяющий метод первого порядка к сглаженной версии исходной функции. Можно показать, что стохастический градиент сглаженной функции можно рассматривать как случайную двухточечную аппроксимацию градиента исходной функции. Подходы, основанные на сглаживании, были изучены для распределенной минимизации нулевого порядка, и наша статья обобщает метод сглаживания целевой функции на седловые задачи.

  7. Трифонов С.В., Холодов Я.А.
    Исследование и оптимизация работы беспроводной сенсорной сети на основе протокола ZigBee
    Компьютерные исследования и моделирование, 2012, т. 4, № 4, с. 855-869

    В работе рассматриваются вопросы алгоритмов функционирования беспроводных сетей на основе модифицированного стека протоколов ZigBee/IEEE 802.15.4 и проблемы энергосбережения с одновременным уменьшением времени доставки сообщений. Даны теоретические выкладки и описаны алгоритмы распределения ролей и установки расписаний для маршрутизаторов. Приведены и проанализированы результаты проведённых натурных экспериментов, а также численных экспериментов выполненных с помощью открытого программного комплекса ns-2.

    Просмотров за год: 5. Цитирований: 12 (РИНЦ).
  8. Аблаев С.С., Макаренко Д.В., Стонякин Ф.С., Алкуса М.С., Баран И.В.
    Субградиентные методы для задач негладкой оптимизации с некоторой релаксацией условия острого минимума
    Компьютерные исследования и моделирование, 2022, т. 14, № 2, с. 473-495

    Задачи негладкой оптимизации нередко возникают во многих приложениях. Вопросы разработки эффективных вычислительных процедур для негладких задач в пространствах больших размерностей весьма актуальны. В таких случаях разумно применятьмет оды первого порядка (субградиентные методы), однако в достаточно общих ситуациях они приводят к невысоким скоростным гарантиям. Одним из подходов к этой проблеме может являться выделение подкласса негладких задач, допускающих относительно оптимистичные результаты о скорости сходимости в пространствах больших размерностей. К примеру, одним из вариантов дополнительных предположений может послужитьуслови е острого минимума, предложенное в конце 1960-х годов Б. Т. Поляком. В случае доступности информации о минимальном значении функции для липшицевых задач с острым минимумом известен субградиентный метод с шагом Б. Т. Поляка, который гарантирует линейную скорость сходимости по аргументу. Такой подход позволил покрыть ряд важных прикладных задач (например, задача проектирования точки на выпуклый компакт или задача отыскания общей точки системы выпуклых множеств). Однако как условие доступности минимального значения функции, так и само условие острого минимума выглядят довольно ограничительными. В этой связи в настоящей работе предлагается обобщенное условие острого минимума, аналогичное известному понятию неточного оракула. Предложенный подход позволяет расширить класс применимости субградиентных методов с шагом Б. Т. Поляка на ситуации неточной информации о значении минимума, а также неизвестной константы Липшица целевой функции. Более того, использование в теоретической оценке качества выдаваемого методом решения локальных аналогов глобальных характеристик целевой функции позволяет применять результаты такого типа и к более широким классам задач. Показана возможностьпр именения предложенного подхода к сильно выпуклым негладким задачам и выполнено экспериментальное сравнение с известным оптимальным субградиентным методом на таком классе задач. Более того, получены результаты о применимости предложенной методики для некоторых типов задач с релаксациями выпуклости: недавно предложенное понятие слабой $\beta$-квазивыпуклости и обычной квазивыпуклости. Исследовано обобщение описанной методики на ситуацию с предположением о доступности на итерациях $\delta$-субградиента целевой функции вместо обычного субградиента. Для одного из рассмотренных методов найдены условия, при которых на практике можно отказаться от проектирования итеративной последовательности на допустимое множество поставленной задачи.

  9. Никитюк А.С.
    Идентификация параметров вязкоупругих моделей клетки на основе силовых кривых и вейвлет-преобразования
    Компьютерные исследования и моделирование, 2023, т. 15, № 6, с. 1653-1672

    Механические свойства клеток эукариот играют важную роль в условиях жизненного цикла и при развитии патологических процессов. В работе обсуждается проблема идентификации и верификации параметров вязкоупругих конститутивных моделей на основе данных силовой спектроскопии клеток эукариот. Предлагается использовать одномерное непрерывное вейвлет-преобразование для расчета ядра релаксации. Приводятся аналитические выкладки и результаты численных расчетов, позволяющие на основе экспериментально установленных силовых кривых и теоретических зависимостей «напряжение – деформация» с применением алгоритмов вейвлет-дифференцирования получать аналогичные друг другу функции релаксации. Анализируются тестовые примеры, демонстрирующие корректности программной реализации предложенных алгоритмов. Рассматриваются модели клетки, на примере которых демонстрируется применение предложенной процедуры идентификации и верификации их параметров. Среди них структурно-механическая модель с параллельно соединенными дробными элементами, которая является на данный момент наиболее адекватной с точки зрения соответствия данным атомно-силовой микроскопии широкого класса клеток, и новая статистико-термодинамическая модель, которая не уступает в описательных возможностях моделям с дробными производными, но имеет более ясный физический смысл. Для статистико-термодинамической модели подробно описывается процедура ее построения, которая в себя включает следующее: введение структурной переменной, параметра порядка, для описания ориентационных свойств цитоскелета клетки; постановку и решение статистической задачи для ансамбля актиновых филаментов представительного объема клетки относительно данной переменной; установление вида свободной энергии, зависящей от параметра порядка, температуры и внешней нагрузки. Также предложено в качестве модели представительного элемента клетки использовать ориентационно-вязкоупругое тело. Согласно теории линейной термодинамики получены эволюционные уравнения, описывающие механическое поведение представительного объема клетки, которые удовлетворяют основным термодинамическим законам. Также поставлена и решена задача оптимизации параметров статистико-термодинамической модели клетки, которая может сопоставляется как с экспериментальными данными, так и с результатами симуляций на основе других математических моделей. Определены вязкоупругие характеристики клеток на основе сопоставления с литературными данными.

  10. Поддубный В.В., Романович О.В.
    Математическое моделирование оптимального рынка конкурирующих товаров в условиях лага поставок
    Компьютерные исследования и моделирование, 2012, т. 4, № 2, с. 431-450

    Предлагается нелинейная рестриктивная (подчиняющаяся ограничениям типа неравенств) динамическая математическая модель свободного рынка многих товаров в условиях лага поставок товаров на рынок и линейной зависимости вектора спроса от вектора цен. Ставится задача отыскания оптимальных с точки зрения прибыли продавца цен и поставок товаров на рынок. Показано, что максимальная суммарная прибыль продавца выражается непрерывной кусочногладкой функцией вектора объемов поставок с разрывом производных на границах зон товарного дефицита, затоваривания и динамического равновесия рынка по каждому из товаров. С использованием аппарата предикатных функций построен вычислительный алгоритм оптимизации поставок товаров на рынок.

    Просмотров за год: 1. Цитирований: 3 (РИНЦ).
Страницы: « первая предыдущая следующая последняя »

Журнал индексируется в Scopus

Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"

Международная Междисциплинарная Конференция МАТЕМАТИКА. КОМПЬЮТЕР. ОБРАЗОВАНИЕ.