Текущий выпуск Номер 2, 2025 Том 17

Все выпуски

Результаты поиска по 'оптимальные стратегии':
Найдено статей: 27
  1. Холодов Я.А.
    Разработка сетевых вычислительных моделей для исследования нелинейных волновых процессов на графах
    Компьютерные исследования и моделирование, 2019, т. 11, № 5, с. 777-814

    В различных приложениях возникают задачи, моделируемые уравнениями в частных производных на графах (сетях, деревьях). Для исследования данных проблем и возникающих различных экстремальных ситуаций, для задач проектирования и оптимизации сетей различных типов в данной работе построена вычислительная модель, основанная на решении соответствующих краевых задач для нелинейных уравнений в частных производных гиперболического типа на графах (сетях, деревьях). В качестве приложений были выбраны три различные задачи, решаемые в рамках общего подхода сетевых вычислительных моделей. Первая — это моделирование движения транспортных потоков. При решении данной задачи использовался макроскопический подход, при котором транспортный поток описывается нелинейной системой гиперболических уравнений второго порядка. Проведенные расчеты и полученные результаты показали, что разработанная в рамках предложенного подхода модель хорошо воспроизводит реальную ситуацию на различных участках транспортной сети г. Москвы на значительных временных интервалах, а также может быть использована для выбора наиболее оптимальной стратегии организации дорожного движения в городе. Вторая — моделирование потоков данных в компьютерных сетях. В этой задаче потоки данных различных соединений в пакетной сети передачи данных моделировались в виде несмешивающихся потоков сплошной среды. Предложены концептуальная и математическая модели сети. Проведено численное моделирование в сравнении с системой имитационного моделирования сети NS-2. Полученные результаты показали, что в сравнении с пакетной моделью NS-2 разработанная нами потоковая модель демонстрирует значительную экономию вычислительных ресурсов, обеспечивая при этом хорошую степень подобия, и позволяет моделировать поведение сложных глобально распределенных IP-сетей передачи данных. Третья — моделирование распространения газовых примесей в вентиляционных сетях. Была разработана вычислительная математическая модель распространения мелкодисперсных или газовых примесей в вентиляционных сетях с использованием уравнений газовой динамики путем численного сопряжения областей разной размерности. Проведенные расчеты показали, что модель с хорошей точностью позволяет определять распределение газодинамических параметров в трубопроводной сети и решать задачи динамического управления вентиляцией.

  2. Ильичев В.Г., Дашкевич Л.В.
    Оптимальный промысел и эволюция путей миграции рыбных популяций
    Компьютерные исследования и моделирование, 2019, т. 11, № 5, с. 879-893

    Представлена новая дискретная эколого-эволюционная математическая модель, в которой реализованы механизмы поиска эволюционно устойчивых маршрутов миграции рыбных популяций. Предложенные адаптивные конструкции имеют малую размерность и поэтому обладают высоким быстродействием, что позволяет проводить компьютерные расчеты на длительный срок за приемлемое машинное время. При исследовании устойчивости использованы как геометрические подходы нелинейного анализа, так и компьютерные асимптотические методы. Динамика миграции рыбной популяции описывается некоторой марковской матрицей, которая может изменяться в процессе эволюции. В семействе марковских матриц (фиксированной размерности) выделены базисные матрицы, которые использованы для генерации маршрутов миграции мутантов. В результате конкуренции исходной популяции с мутантами выявляется перспективное направление эволюции пространственного поведения рыбы при заданном промысле и кормовой базе. Данная модель была применена к решению проблемы оптимального вылова на долгосрочную перспективу, при условии, что водоем разделен на две части, у каждой из которых свой собственник. При решении оптимизационных задач используется динамическое программирование, основанное на построении функции Беллмана. Обнаружена парадоксальная стратегия заманивания, когда один из участников промысла на своей акватории временно сокращает вылов. В этом случае мигрирующая рыба больше времени проводит в этом районе (при условии равной кормовой базы). Такой маршрут эволюционно закрепляется и не изменяется даже после возобновления промысла в этом районе. Второй участник промысла может восстановить статус-кво, применив заманивание на своей части акватории. Возникает бесконечная последовательность заманиваний — своеобразная игра в поддавки. Введено новое эффективное понятие — внутренняя цена рыбной популяции, зависящая от района водоема. По сути, эти цены представляют собой частные производные функции Беллмана и могут быть использованы в качестве налога на выловленную рыбу. В этом случае проблема многолетнего промысла сводится к решению задачи одногодичной оптимизации.

  3. Мы разработали модель кормодобывания колонии медоносных пчел на основе уравнений «реакция – диффузия». Работающие пчелы передают информацию о своих источниках пищи с помощью танца, а соискатели работы в улье могут выбрать любой понравившийся им танец и, таким образом, присоединиться к эксплуатации соответствующего источника. Мы рассматриваем две стратегии выбора танцев: целенаправленную, когда пчелы анализируют информацию на танцполе и выбирают самый энергичный и длительный танец, отвечающий самому прибыльному источнику, и просто случайный выбор первого попавшегося танца. Моделирование показало, что наибольшую прибыль (приток пищи в улей) обеспечивает именно случайный выбор танца, как бы это парадоксально на первый взгляд ни звучало. Оптимизация прибыли каждым агентом под себя (целенаправленный выбор танцев) является скорее недостатком для колонии, а «неоптимальность» в выборе танца может быть результатом полезной эволюционной адаптации.

  4. Дидыч Я.О., Малинецкий Г.Г.
    Анализ стратегий противников при игре в модифицированный «Морской бой»
    Компьютерные исследования и моделирование, 2016, т. 8, № 5, с. 817-827

    Врабо те рассматривается известная игра «Морской бой». Цель статьи — предложить модифицированную версию «Морского боя» и найти оптимальные стратегии действий игроков в новых правилах. Изменения коснулись как применяемых атакующих стратегий (добавлена новая возможность атаки, охватывающая четыре клетки за один выстрел), размера поля (использовались варианты игры для полей 10 × 10, 20 × 20, 30 × 30), так и правил расстановки кораблей в процессе боя (добавлена возможность перемещения корабля из зоны обстрела). Игра решалась с применением аппарата теории игр: составлены платежные матрицы для каждого варианта изменяемых правил, для них найдены оптимальные смешанные и чистые стратегии. При решении платежных матриц использовался итерационный метод. Симуляция состояла в применении пяти алгоритмов атаки и шести алгоритмов защиты с вариацией параметров при игре «каждого с каждым». Атакующие алгоритмы варьировались в разрезе 100 различных наборов значений, алгоритмы защиты — в разрезе 150 каждый. Важным результатом стало то, что в рамках этих ал- горитмов модифицированный «Морской бой» может быть решен, — то есть могут быть найдены устойчивые чистые или смешанные стратегии поведения, обеспечивающие сторонам оптимальный исход с точки зрения теории игр. Помимо этого, сделана оценка влияния изменений правил стандартного «Морского боя» на результат противостояния. Приведено сравнение с результатами, полученными авторами в предыдущей работе по данной тематике. На основе сопоставления полученных платежных матриц со статистическим анализом, проведенным ранее, отмечено, что стандартный «Морской бой» может быть представлен как частный случай рассмотренных в данной работе модификаций. Задача актуальна как с точки зрения ее применения в военном деле, так и в гражданских областях. Использование результатов статьи способно сохранить ресурсы при геологоразведке, обеспечить преимущество в военном противостоянии, сохранить детали, подвергающиеся разрушительному воздействию, и так далее.

    Просмотров за год: 18.
  5. Малыгина Н.В., Сурков П.Г.
    О моделировании преодоления водной преграды Rangifer tarandus L
    Компьютерные исследования и моделирование, 2019, т. 11, № 5, с. 895-910

    Видоспецифическими поведенческими признаками дикого северного оленя Rangifer tarandus L. традиционно признаны сезонные миграции и стадный инстинкт. В период миграций эти животные вынуждены преодолевать водные преграды. Особенности поведения рассматриваются как результат процесса селекции, когда среди множества стратегий выбрана единственно эволюционно-стабильная, определяющая репродукцию и биологическую выживаемость дикого северного оленя как вида. Ввиду эскалации промышленного освоения Арктики в настоящее время естественные процессы в популяциях диких северных оленей таймырской популяции происходят на фоне увеличения влияния негативных факторов, поэтому естественно возникла необходимость выявления этологических особенностей этих животных. В настоящей работе представлены результаты применения классических методов теории оптимального управления и дифференциальных игр к исследованию миграционных этограмм диких северных оленей при преодолении водных преград, в том числе крупных рек. На основе этологических особенностей этих животных и форм поведения стадо представляется в качестве управляемой динамической системы. Также оно делится на два класса особей: вожак и остальное стадо, для которых строятся свои модели, описывающие траектории их движения. В основу моделей закладываются гипотезы, представляющие собой математическую формализацию некоторых схем поведения животных. Данный подход позволил найти траекторию важенки с использованием методов теории оптимального управления, а при построении траекторий остальных особей — применить принцип управления с поводырем. Апробация полученных результатов, которые могут быть использованы в формировании общей «платформы» для систематического построения моделей адаптивного поведения и в качестве задела для фундаментальных разработок моделей когнитивной эволюции, проводится численно на модельном примере, использующем данные наблюдений на реке Верхняя Таймыра.

  6. Степин Ю.П., Леонов Д.Г., Папилина Т.М., Степанкина О.А.
    Системное моделирование, оценка и оптимизация рисков функционирования распределенных компьютерных систем
    Компьютерные исследования и моделирование, 2020, т. 12, № 6, с. 1349-1359

    В статье рассматривается проблема надежности эксплуатации открытой интеграционной платформы, обеспечивающей взаимодействие различных программных комплексов моделирования режимов транспорта газа, с учетом предоставления доступа к ним, в том числе через тонких клиентов, по принципу «программное обеспечение как услуга». Математически описаны функционирование, надежность хранения, передачи информации и реализуемость вычислительного процесса системы, что является необходимым для обеспечения работы автоматизированной системы диспетчерского управления транспортом нефти и газа. Представлено системное решение вопросов моделирования работы интеграционной платформы и тонких клиентов в условиях неопределенности и риска на базе метода динамики средних теории марковских случайных процессов. Рассматривается стадия стабильной работы — стационарный режим работы цепи Маркова с непрерывным временем и дискретными состояниями, которая описывается системами линейных алгебраический уравнений Колмогорова–Чепмена, записанных относительно средних численностей (математических ожиданий) состояний объектов исследования. Объектами исследования являются как элементы системы, присутствующие в большом количестве (тонкие клиенты и вычислительные модули), так и единичные (сервер, сетевой менеджер (брокер сообщений), менеджер технологических схем). В совокупности они представляют собой взаимодействующие Марковские случайные процессы, взаимодействие которых определяется тем, что интенсивности переходов в одной группе элементов зависят от средних численностей других групп элементов.

    Через средние численности состояний объектов и интенсивностей их переходов из состояния в состояние предлагается многокритериальная дисперсионная модель оценки риска (как в широком, так и узком смысле, в соответствии со стандартом МЭК). Риск реализации каждого состояния параметров системы вычисляется как среднеквадратическое отклонение оцениваемого параметра системы объектов (в данном случае — средние численности и вероятности состояний элементов открытой интеграционной платформы и облака) от их среднего значения. На основании определенной дисперсионной модели риска функционирования элементов системы вводятся модели критериев оптимальности и рисков функционирования системы в целом. В частности, для тонкого клиента рассчитываются риск недополучения выгоды от подготовки и обработки запроса, суммарный риск потерь, связанный только с непроизводительными состояниями элемента, суммарный риск всех потерь от всех состояний системы. Для полученной многокритериальной задачи оценки рисков предлагаются модели (схемы компромисса) выбора оптимальной стратегии эксплуатации.

  7. Руденко В.Д., Юдин Н.Е., Васин А.А.
    Обзор выпуклой оптимизации марковских процессов принятия решений
    Компьютерные исследования и моделирование, 2023, т. 15, № 2, с. 329-353

    В данной статье проведен обзор как исторических достижений, так и современных результатов в области марковских процессов принятия решений (Markov Decision Process, MDP) и выпуклой оптимизации. Данный обзор является первой попыткой освещения на русском языке области обучения с подкреплением в контексте выпуклой оптимизации. Рассматриваются фундаментальное уравнение Беллмана и построенные на его основе критерии оптимальности политики — стратегии, принимающие решение по известному состоянию среды на данный момент. Также рассмотрены основные итеративные алгоритмы оптимизации политики, построенные на решении уравнений Беллмана. Важным разделом данной статьи стало рассмотрение альтернативы к подходу $Q$-обучения — метода прямой максимизации средней награды агента для избранной стратегии от взаимодействия со средой. Таким образом, решение данной задачи выпуклой оптимизации представимо в виде задачи линейного программирования. В работе демонстрируется, как аппарат выпуклой оптимизации применяется для решения задачи обучения с подкреплением (Reinforcement Learning, RL). В частности, показано, как понятие сильной двойственности позволяет естественно модифицировать постановку задачи RL, показывая эквивалентность между максимизацией награды агента и поиском его оптимальной стратегии. В работе также рассматривается вопрос сложности оптимизации MDP относительно количества троек «состояние–действие–награда», получаемых в результате взаимодействия со средой. Представлены оптимальные границы сложности решения MDP в случае эргодического процесса с бесконечным горизонтом, а также в случае нестационарного процесса с конечным горизонтом, который можно перезапускать несколько раз подряд или сразу запускать параллельно в нескольких потоках. Также в обзоре рассмотрены последние результаты по уменьшению зазора нижней и верхней оценки сложности оптимизации MDP с усредненным вознаграждением (Averaged MDP, AMDP). В заключение рассматриваются вещественнозначная параметризация политики агента и класс градиентных методов оптимизации через максимизацию $Q$-функции ценности. В частности, представлен специальный класс MDP с ограничениями на ценность политики (Constrained Markov Decision Process, CMDP), для которых предложен общий прямодвойственный подход к оптимизации, обладающий сильной двойственностью.

  8. Коваленко С.Ю., Юсубалиева Г.М.
    Задача выживаемости для математической модели терапии глиомы с учетом гематоэнцефалического барьера
    Компьютерные исследования и моделирование, 2018, т. 10, № 1, с. 113-123

    В статье предлагается математическая модель терапии глиомы с учетом гематоэнцефалического барьера, радиотерапии и терапии антителами. Проведена оценка параметров по экспериментальным данным, а также оценка влияния значений параметров на эффективность лечения и прогноз болезни. Исследованы возможные варианты последовательного применения радиотерапии и воздействия антител. Комбинированное применение радиотерапии с внутривенным введением $mab$ $Cx43$ приводит к потенцированию терапевтического эффекта при глиоме. Радиотерапия должна предшествовать химиотерапии, поскольку радиовоздействие уменьшает барьерную функцию эндотелиальных клеток. Эндотелиальные клетки сосудовмоз га плотно прилегают друг к другу. Между их стенками образуются так называемые плотные контакты, роль которых во беспечении ГЭБ состоит в том, что они предотвращают проникновение в ткань мозга различных нежелательных веществ из кровеносного русла. Плотные контакты между эндотелиальными клетками блокируют межклеточный пассивный транспорт.

    Математическая модель состоит из непрерывной части и дискретной. Экспериментальные данные объема глиомы показывают следующую интересную динамику: после прекращения радиовоздействия рост опухоли не возобновляется сразу же, а существует некоторый промежуток времени, в течение которого глиома не растет. Клетки глиомы разделены на две группы. Первая группа — живые клетки, делящиеся с максимально возможной скоростью. Вторая группа — клетки, пострадавшие от радиации. В качестве показателя здоровья системы гематоэнцефалического барьера выбрано отношение количества клеток ГЭБ вт екущий момент к количеству клеток всо стоянии покоя, то есть всре днем здоровом состоянии.

    Непрерывная часть модели включает в себя описание деления обоих типов клеток глиомы, восстановления клеток ГЭБ, а также динамику лекарственного средства. Уменьшение количества хорошо функционирующих клеток ГЭБ облегчает проникновение лекарственного средства к клеткам мозга, то есть усиливает действие лекарства. При этом скорость деления клеток глиомы не увеличивается, поскольку ограничена не дефицитом питательных веществ, доступных клеткам, а внутренними механизмами клетки. Дискретная часть математической модели включает в себя оператор радиовоздействия, который применяется к показателю ГЭБ и к глиомным клеткам.

    В рамках математической модели лечения раковой опухоли (глиомы) решается задача оптимального управления с фазовыми ограничениями. Состояние пациента описывается двумя переменными: объемом опухоли и состоянием ГЭБ. Фазовые ограничения очерчивают некоторую область в пространстве этих показателей, которую мы называем областью выживаемости. Наша задача заключается в поиске таких стратегий лечения, которые минимизируют время лечения, максимизируют время отдыха пациента и при этом позволяют показателям состояния не выходить за разрешенные пределы. Поскольку задача выживаемости состоит в максимизации времени жизни пациента, то ищутся именно такие стратегии лечения, которые возвращают показатели в исходное положение (и мы видим на графиках периодические траектории). Периодические траектории говорят о том, что смертельно опасная болезнь переведена враз ряд хронических.

    Просмотров за год: 14.
  9. Самойленко И.А., Кулешов И.В., Райгородский А.М.
    Модель двухуровневой межгрупповой конкуренции
    Компьютерные исследования и моделирование, 2023, т. 15, № 2, с. 355-368

    Еще в середине позапрошлого десятилетия ученые, изучавшие функционирование сообществ насекомых, выделили 4 основных паттерна организационной структуры таких сообществ. (i) Сотрудничество более развито в группах с сильным родством. (ii) Кооперация у видов с большими размерами колоний зачастую развита больше, чем у видов с малыми размерами колоний. Причем в колониях малого размера зачастую наблюдаются больший внутренний репродуктивный конфликт и меньшая морфологическая и поведенческая специализация. (iii) В пределах одного вида численность выводка (т. е. в некотором смысле эффективность) на душу населения обычно снижается по мере увеличения размера колонии. (iv) Развитая кооперация, склонная проявляться при ограниченности ресурсов и жесткой межгрупповой конкуренции. Думая о функционировании группы организмов как о двухуровневом рынке конкуренции, в котором в процессе индивидуального отбора особи сталкиваются с проблемой распределения своей энергии между инвестициями в межгрупповую конкуренцию и инвестициями во внутригрупповую конкуренцию, т. е. внутреннюю борьбу за долю ресурсов, полученных в результате межгрупповой конкуренции, можно сопоставить подобной биологической ситуации экономический феномен coopetition — кооперацию конкурирующих агентов с целью в дальнейшем конкурентно поделить выигранный вследствие кооперации ресурс. В рамках экономических исследований были показаны эффекты, аналогичные (ii): в рамках соревнования большой и маленькой групп оптимальной стратегией большой будет полное выдавливание второй группы и монополизация рынка (т. е. большие группы склонны действовать кооперативно); (iii) существуют условия, при которых размер группы оказывает негативное влияние на продуктивность каждого ее индивида (такой эффект называется парадоксом размера группы, или эффект Рингельмана). Общей идеей моделирования подобных эффектов является идея пропорциональности: каждый индивид (особь / рациональный агент) решает, какую долю своих сил инвестировать в межгрупповую конкуренцию, а какую — во внутригрупповую. При этом выигрыш группы должен быть пропорционален ее суммарным инвестициям в конкуренцию, тогда как выигрыш индивида пропорционален его вкладу во внутривидовую борьбу. Несмотря на распространенность эмпирических наблюдений, до сих пор не была введена теоретико-игровая модель, в которой можно было бы подтвердить наблюдаемые эмпирически эффекты. В рамках данной работы предлагается модель, которая устраняет проблемы ранее существующих, а моделирование равновесных по Нэшу состояний в рамках предложенной модели позволяет пронаблюдать перечисленные выше эффекты в ходе численных экспериментов.

  10. Шумов В.В.
    Моделирование специальных действий и борьбы с терроризмом
    Компьютерные исследования и моделирование, 2024, т. 16, № 6, с. 1467-1498

    Специальные действия (партизанские, антипартизанские, разведывательно-диверсионные, подрывные, контртеррористические, контрдиверсионные и др.) организуются и проводятся силами обеспечения правопорядка и вооруженными силами и направлены на защиту граждан и обеспечение национальной безопасности. С начала 2000-х гг. проблематика специальных действий привлекла внимание специалистов в области моделирования, социологов, физиков и представителей других наук. В настоящей статье даны обзор и характеристика работ в области моделирования специальных действий и борьбы с терроризмом. Работы классифицированы по методам моделирования (описательные, оптимизационные и теоретико-игровые), по видам и этапам действий, фазам управления (подготовка и ведение деятельности). Во втором разделе представлена классификация методов и моделей специальных действий и борьбы с терроризмом, дан краткий обзор описательных моделей. Рассмотрены метод географического профилирования, сетевые игры, модели динамики специальных действий, функция победы в боевых и специальных действиях (зависимость вероятности победы от соотношения сил и средств сторон). В третьем разделе рассмотрены игра «атакующий – защитник» и ее расширения: игра Штакельберга и игра безопасности Штакельберга, а также вопросы их применения в задачах обеспечения безопасности. В игре «атакующий – защитник» и играх безопасности известные работы классифицируются по следующим основаниям: последовательность ходов, количество игроков и их целевые функции, временной горизонт игры, степень рациональности игроков и их отношение к риску, степень информированности игроков. Четвертый раздел посвящен описанию игр патрулирования на графе с дискретным временем и одновременным выбором сторонами своих действий (для поиска оптимальных стратегий вычисляется равновесие Нэша). В пятом разделе рассмотрены теоретико-игровые модели обеспечения транспортной безопасности как приложения игр безопасности Штакельберга. Последний раздел посвящен обзору и характеристике ряда моделей обеспечения пограничной безопасности на двух фазах управления: подготовка и ведение деятельности. Рассмотрен пример эффективного взаимодействия подразделений береговой охраны с университетскими исследователями. Перспективными направлениями дальнейших исследований являются следующие: во-первых, моделирование контртеррористических и специальных операций по нейтрализации террористических и диверсионных групп с привлечением разноведомственных и разнородных сил и средств, во-вторых, комплексирование моделей по уровням и этапам циклов деятельности; в-третьих, разработка теоретико-игровых моделей борьбы с морским терроризмом и пиратством.

Страницы: предыдущая следующая

Журнал индексируется в Scopus

Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"

Международная Междисциплинарная Конференция МАТЕМАТИКА. КОМПЬЮТЕР. ОБРАЗОВАНИЕ.