Все выпуски
- 2025 Том 17
- 2024 Том 16
- 2023 Том 15
- 2022 Том 14
- 2021 Том 13
- 2020 Том 12
- 2019 Том 11
- 2018 Том 10
- 2017 Том 9
- 2016 Том 8
- 2015 Том 7
- 2014 Том 6
- 2013 Том 5
- 2012 Том 4
- 2011 Том 3
- 2010 Том 2
- 2009 Том 1
-
Многоагентный протокол локального голосования для онлайнового планирования DAG
Компьютерные исследования и моделирование, 2025, т. 17, № 1, с. 29-44Планирование вычислительных рабочих процессов, представленных направленными ациклическими графами (DAG), имеет ключевое значение для многих областей информатики, таких как облачные/edge задачи с распределенной рабочей нагрузкой и анализ данных. Сложность онлайнового планирования DAG усугубляется большим количеством вычислительных узлов, задержками передачи данных, неоднородностью (по типу и вычислительной мощности) исполнителей, ограничениями предшествования, накладываемыми DAG, и неравномерностью поступления задач. В данной статье представлен мультиагентный протокол локального голосования (MLVP) — новый подход, ориентированный на динамическое распределение нагрузки при планировании DAG в гетерогенных вычислительных средах, где исполнители представлены в виде агентов. MLVP использует протокол локального голосования для достижения эффективного распределения нагрузки, формулируя проблему как дифференцированное достижение консенсуса. Алгоритм вычисляет агрегированную метрику DAG для каждой пары исполнитель – узел на основе зависимостей между узлами, доступности узлов и производительности исполнителей. Баланс этих метрик как взвешенная сумма оптимизируется с помощью генетического алгоритма для вероятностного распределения задач, что позволяет добиться эффективного распределения рабочей нагрузки за счет обмена информацией и достижения консенсуса между исполнителями всей системы и, таким образом, улучшить время выполнения. Эффективность MLVP демонстрируется путем сравнения с современным алгоритмом планирования DAG и популярными эвристиками, такими как DONF, FIFO, Min-Min и Max-Min. Численное моделирование показывает, что MLVP достигает улучшения makepsan до 70% на определенных топологиях графов и среднего сокращения makepan на 23,99% по сравнению с DONF (современная эвристика планирования DAG) на случайно сгенерированном разнообразном наборе DAG. Примечательно, что масштабируемость алгоритма подтверждается ростом производительности при увеличении числа исполнителей и узлов графа.
-
Критическая скорость роста вычислительных сетей для обеспечения неограниченной наработки на отказ
Компьютерные исследования и моделирование, 2009, т. 1, № 1, с. 33-39Исследуется отказоустойчивость конечной вычислительной сети с произвольным графом, элементы которой имеют вероятность отказа и вероятность восстановления после отказа. Работа сети происходит по трехэтапным тактам (разрушение-восстановление-функционирование). Предлагается алгоритм наращивания сети в начале каждого такта ее работы. При этом граф увеличенной конфигурации сети формируется путем добавления новых экземпляров исходной сети и соединения их определенным образом с элементами старой конфигурации сети. Доказывается, что при достаточно быстром росте сеть имеет положительную вероятность неограниченной безотказной работы. Параметрическая оценка критической скорости роста сети имеет логарифмический порядок по числу тактов.
-
Разработка, калибровка и верификация модели движения трафика в городских условиях. Часть I
Компьютерные исследования и моделирование, 2015, т. 7, № 6, с. 1185-1203Просмотров за год: 4. Цитирований: 2 (РИНЦ).В данной работе исследуется проблема унификации процедуры разработки и калибровки математической модели движения транспортного потока на автомобильной многополосной дороге в городских условиях. При этом использовался макроскопический подход, при котором транспортный поток описывается нелинейной системой гиперболических уравнений (для плотности и скорости потока) второго порядка. Полученная модель замыкается через уравнение зависимости интенсивности транспортного потока от его плотности, получаемое эмпирическим образом для каждого отдельного участка транспортной сети с использованием данных транспортных детекторов и автомобильных GPS-треков. Проверка работоспособности разработанной нами модели и методики калибровки проводилась с использованием численных расчетов, путем проведения вычисленных экспериментов на типичных данных, таких как моделирование движения трафика на заданном участке городской транспортной сети г. Москвы.
-
Исследование и редуцирование математической модели химической реакции методом Соболя
Компьютерные исследования и моделирование, 2016, т. 8, № 4, с. 633-646Просмотров за год: 10. Цитирований: 4 (РИНЦ).В работе предложена методика упрощения математической модели химической реакции за счет сокращения числа стадий схемы реакции, основанная на анализе чувствительности целевой функции к изменению параметров модели. Функционал характеризует меру близости расчетных значений по исходной кинетической схеме реакции и схеме, полученной возмущением ее параметров. Преимуществом данной методики является возможность анализа сложных кинетических схем и редуцирования кинетических моделей до размеров, приемлемых с точки зрения точности описания и простоты практического использования. В функционал можно включить результаты вычислительных экспериментов при различных условиях проведения реакции и таким образом получить компактную схему, согласующуюся с детальной схемой для требуемого диапазона условий. Анализ чувствительности функционала модели позволяет выявить те параметры, которые обеспечивают наибольший (или наименьший) вклад на результат моделирования процесса. Математическая модель может содержать параметры, изменение значений которых не влияет на качественное и количественное описание процесса. Вклад таких параметров в значение функционала не будет иметь большого значения. Поэтому стадии, которые не служат для моделирования кинетических кривых веществ, можно исключить из рассмотрения. С применением данной методики была исследована кинетическая схема реакции окисления формальдегида, детальный механизм которой включает в себя 25 стадий и 15 веществ. На основании локального и глобального анализа чувствительности определены наиболее значимые стадии процесса, влияющие на общую динамику изменения концентраций целевых веществ реакции. Получена редуцированная схема модельной реакции окисления формальдегида, которая так же описывает поведение основных веществ реакции, как и детальная схема, но имеет значительно меньшее число стадий реакций. Приведены результаты сравнительного анализа моделирования реакции окисления формальдегида по детальной и редуцированной схемам. В статье приведены вычислительные аспекты решения задач химической кинетики глобальным методом Соболя И.М. на примере данной реакции. Приведены результаты сравнения локальных, глобальных и полных глобальных коэффициентов чувствительности.
-
Бегущие волныв параболической задаче с преобразованием поворота на окружности
Компьютерные исследования и моделирование, 2017, т. 9, № 5, с. 705-716Оптические системы с двумерной обратной связью демонстрируют широкие возможности по исследованию процессов зарождения и развития диссипативных структур. Обратная связь позволяет воздействовать на динамику оптической системы посредством управляемого преобразования пространственных переменных, выполняемых призмами, линзами, динамическими голограммами и другими устройствами. Нелинейный интерферометр с зеркальным отражением поля в двумерной обратной связи является одной из наиболее простых оптических систем, в которых реализуется нелокальный характер взаимодействия световых полей.
Математической моделью оптических систем с двумерной обратной связью является нелинейное параболическое уравнение с преобразованием поворота пространственной переменной и условиями периодичности на окружности.
Исследуются вопросы бифуркации рождения стационарных структур типа бегущей волны, эволюции их форм при уменьшении бифуркационного параметра (коэффициента диффузии) и динамики их устойчивости при отходе от критического значения параметра бифуркации и дальнейшем его уменьшении. Впервые в качестве бифуркационного параметра был взят коэффициент диффузии.
В работе используются метод центральных многообразий и метод Галёркина. На основе метода центральных многообразий доказана теорема о существовании, форме и устойчивости решения типа бегущей волны в окрестности бифуркационного значения коэффициента диффузии. Получено представление первой бегущей волны, рождающейся в результате бифуркации Андронова–Хопфа при переходе бифуркационного параметра через критическое значение. Согласно теореме о центральном многообразии первая бегущая волна рождается орбитально устойчивой.
Поскольку доказанная теорема дает возможность исследовать рожденные решения только в окрестности критического значения бифуркационного параметра, то для изучения динамики изменений решения типа бегущей волны при отходе бифуркационного параметра в область надкритичности был использован формализм метода Галёркина. В соответствии с методом центральных многообразий составлена галёркинская аппроксимация приближенных решений поставленной задачи. При уменьшении параметра бифуркации и его переходе через критическое значение нулевое решение задачи теряет устойчивость колебательным образом. В результате от нулевого решения ответвляется периодическое решение типа бегущей волны. Эта волна рождается орбитально устойчивой. При дальнейшем уменьшении параметра и его прохождении через следующее критическое значение от нулевого решения в результате бифуркации Андронова–Хопфа рождается второе решение типа бегущей волны. Данная волна рождается неустойчивой, с индексом неустойчивости два.
Численные расчеты с помощью пакета Mathematica показали, что применение метода Галёркина приводит к качественно и количественно правильным результатам. Полученные результаты хорошо согласуются с результатами, полученными другими авторами, и могут быть использованы для постановки экспериментов по изучению явлений в оптических системах с обратной связью.
Ключевые слова: параболическая задача, бифуркация, устойчивость, бегущая волна, метод центральных многообразий, метод Галёркина.Просмотров за год: 11. Цитирований: 5 (РИНЦ). -
Гипотеза об оптимальных оценках скорости сходимости численных методов выпуклой оптимизации высоких порядков
Компьютерные исследования и моделирование, 2018, т. 10, № 3, с. 305-314В данной работе приводятся нижние оценки скорости сходимости для класса численных методов выпуклой оптимизации первого порядка и выше, т. е. использующих градиент и старшие производные. Обсуждаются вопросы достижимости данных оценок. Приведенные в статье оценки замыкают известные на данный момент результаты в этой области. Отметим, что замыкание осуществляется без должного обоснования, поэтому в той общности, в которой данные оценки приведены в статье, их стоит понимать как гипотезу. Опишембо лее точно основной результат работы. Пожалуй, наиболее известнымм етодом второго порядка является метод Ньютона, использующий информацию о градиенте и матрице Гессе оптимизируемой функции. Однако даже для сильно выпуклых функций метод Ньютона сходится лишь локально. Глобальная сходимость метода Ньютона обеспечивается с помощью кубической регуляризации оптимизируемой на каждом шаге квадратичной модели функции [Nesterov, Polyak, 2006]. Сложность решения такой вспомогательной задачи сопоставима со сложностью итерации обычного метода Ньютона, т. е. эквивалентна по порядку сложности обращения матрицы Гессе оптимизируемой функции. В 2008 году Ю. Е. Нестеровымбыл предложен ускоренный вариант метода Ньютона с кубической регуляризацией [Nesterov, 2008]. В 2013 г. Monteiro – Svaiter сумели улучшить оценку глобальной сходимости ускоренного метода с кубической регуляризацией [Monteiro, Svaiter, 2013]. В 2017 году Arjevani – Shamir – Shiff показали, что оценка Monteiro – Svaiter оптимальна (не может быть улучшена более чем на логарифми- ческий множитель на классе методов 2-го порядка) [Arjevani et al., 2017]. Также удалось получить вид нижних оценок для методов порядка $p ≥ 2$ для задач выпуклой оптимизации. Отметим, что при этом для сильно выпуклых функций нижние оценки были получены только для методов первого и второго порядка. В 2018 году Ю. Е. Нестеров для выпуклых задач оптимизации предложил методы 3-го порядка, которые имеют сложность итерации сопоставимую со сложностью итерации метода Ньютона и сходятся почти по установленным нижним оценкам [Nesterov, 2018]. Таким образом, было показано, что методы высокого порядка вполне могут быть практичными. В данной работе приводятся нижние оценки для методов высокого порядка $p ≥ 3$ для сильно выпуклых задач безусловной оптимизации. Работа также может рассматриваться как небольшой обзор современного состояния развития численных методов выпуклой оптимизации высокого порядка.
Ключевые слова: метод Ньютона, матрица Гессе, нижние оценки, чебышёвские методы, сверхлинейная сходимость.Просмотров за год: 21. Цитирований: 1 (РИНЦ). -
Задачи устойчивости тонких упругих оболочек
Компьютерные исследования и моделирование, 2018, т. 10, № 6, с. 775-787Просмотров за год: 23.В работе рассматриваются различные математические постановки, относящиеся к задаче упругой устойчивости оболочек в связи с обнаруженными в последнее время несоответствиями между экспериментальными данными и предсказаниями, основанными на теории пологих оболочек. Отмечается, что противоречия возникли в связи с появлением новых алгоритмов, позволивших уточнить вычисленные в двадцатом веке так называемые нижние критические напряжения, которые приняты техническими стандартами в качестве критерия глобальной потери устойчивости тонких пологих оболочек. Новые вычисления часто оценивают нижнее критическое напряжение близким к нулю. Следовательно, нижнее критическое напряжение не может приниматься в качестве расчетного значения для анализа потери устойчивости тонкостенной конструкции, а уравнения теории пологих оболочек должны быть заменены другими дифференциальными уравнениями. В новой теории следует также определить критерий потери устойчивости, обеспечивающий совпадение вычислений и экспериментов.
В работе показано, что в рамках динамической нелинейной трехмерной теории упругости противоречие с новыми экспериментами может быть устранено. В качестве критерия глобальной потери устойчивости следует принять напряжение, при котором имеет место бифуркация динамических мод. Нелинейный характер исходных уравнений порождает уединенные (солитонные) волны, которым соответствуют негладкие перемещения оболочек (патерны, вмятины). Существенно, что влияния солитонов проявляются на всех этапах нагружения и резко возрастают, приближаясь к бифуркации. Солитонные решения иллюстрируются на примере тонкой цилиндрической безмоментной оболочки, трехмерный объем которой моделируется двумерной поверхностью с заданной толщиной. В статье отмечается, что волны, формирующие патерны, могут быть обнаружены (а их амплитуды определены) путем акустических или электромагнитных измерений.
Таким образом, появляется техническая возможность снизить риск разрушения оболочек, если проводить мониторинг формы поверхности современными акустическими средствами. Статья завершается формулировкой математических проблем, требующих решения для надежной численной оценки критерия потери устойчивости тонких упругих оболочек.
-
Численный метод решения двумерного уравнения переноса при моделировании ионосферы Земли на основе монотонизированной Z-схемы
Компьютерные исследования и моделирование, 2020, т. 12, № 1, с. 43-58Целью работы является исследование конечно-разностной схемы второго порядка точности, которая создана на основе Z-схемы. Это исследование состоит в численном решении нескольких двумерных дифференциальных уравнений, моделирующих перенос несжимаемой среды.
Одна из реальных задач, при решении которых возникают подобные уравнения, — это численное моделирование сильно нестационарных среднемасштабных процессов в земной ионосфере. Вследствие того, что процессы переноса в ионосферной плазме контролируются магнитным полем, в поперечном к магнитному полю направлении предполагается выполнение условия несжимаемости плазмы. По той же причине в продольном к магнитному полю направлении могут возникать достаточно высокие скорости тепло- и массопереноса.
Актуальной задачей при ионосферном моделировании является исследование плазменных неустойчивостей различных масштабов, которые возникают прежде всего в полярной и экваториальной областях. При этом среднемасштабные неоднородности, имеющие характерные размеры 1–50 км, создают условия для развития мелкомасштабных неустойчивостей. Последние приводят к явлению F-рассеяния, которое существенно влияет на точность работы спутниковых систем позиционирования, а также других космических и наземных радиоэлектронных систем.
Используемые для одновременного моделирования таких разномасштабных процессов разностные схемы должны иметь высокое разрешение. Кроме того, эти разностные схемы должны быть, с одной стороны, достаточно точными, а с другой стороны — монотонными. Причиной таких противоречивых требований является то, что неустойчивости усиливают погрешности разностных схем, особенно погрешности дисперсионного типа. Подобная раскачка погрешностей при численном решении обычно приводит к нефизическим результатам.
При численном решении трехмерных математических моделей ионосферной плазмы используется следующая схема расщепления по физическим процессам: первый шаг расщепления осуществляет продольный перенос, второй шаг расщепления осуществляет поперечный перенос. Исследуемая в работе конечно-разностная схема второго порядка точности приближенно решает уравнения поперечного пере- носа. Эта схема строится с помощью нелинейной процедуры монотонизации Z-схемы, которая является одной из схем второго порядка точности. При этой монотонизации используется нелинейная коррекция по так называемым «косым разностям». «Косые разности» содержат узлы расчетной сетки, относящиеся к разным слоям времени.
Исследования проводились для двух случаев. В первом случае компоненты вектора переноса были знакопостоянны, во втором — знакопеременны в области моделирования. Численно получены диссипативные и дисперсионные характеристики схемы для различных видов ограничивающих функций.
Результаты численных экспериментов позволяют сделать следующие выводы.
1. Для разрывного начального профиля лучшие свойства показал ограничитель SuperBee.
2. Для непрерывного начального профиля при больших пространственных шагах лучше ограничитель SuperBee, а при малых шагах лучше ограничитель Koren.
3. Для гладкого начального профиля лучшие результаты показал ограничитель Koren.
4. Гладкий ограничитель F показал результаты, аналогичные Koren.
5. Ограничители разного типа оставляют дисперсионные ошибки, при этом зависимости дисперсионных ошибок от параметров схемы имеют большую вариабельность и сложным образом зависят от параметров этой схемы.
6. Во всех расчетах численно подтверждена монотонность рассматриваемой разностной схемы. Для одномерного уравнения численно подтверждено свойство неувеличения вариации для всех указанных функций-ограничителей.
7. Построенная разностная схема при шагах по времени, не превышающих шаг Куранта, является монотонной и показывает хорошие характеристики точности для решений разных типов. При превышении шага Куранта схема остается устойчивой, но становится непригодной для задач неустойчивости, поскольку условия монотонности перестают в этом случае выполняться.
-
Физические исследования, численное и аналитическое моделирование взрывных явлений. Обзор
Компьютерные исследования и моделирование, 2020, т. 12, № 3, с. 505-546В данном обзоре рассмотрен широкий круг явлений и задач, связанных с взрывом. Подробные численные исследования позволили обнаружить интересный физический эффект — образование дискретных вихревых структур сразу за фронтом ударной волны, распространяющейся в плотных слоях неоднородной атмосферы. Показана необходимость дальнейшего исследования такого рода явлений и определения степени их связи с возможным развитием газодинамической неустойчивости. Дан краткий анализ многочисленных работ по тепловому взрыву метеороидов при их высокоскоростном движении в атмосфере Земли. Большое внимание уделено разработке численного алгоритма для расчета одновременного взрыва нескольких фрагментов метеороидов и проанализированы особенности развития такого газодинамического течения. Показано, что разработанные раннее алгоритмы для расчета взрывов могут успешно использоваться для исследования взрывных вулканических извержений. В работе представлены и обсуждаются результаты таких исследований как для континентальных, так и для подводных вулканов с определенными ограничениями на условия вулканической активности.
В работе выполнен математический анализ и представлены результаты аналитических исследований ряда важных физических явлений, характерных для взрывов высокой удельной энергии в ионосфере. Показано, что принципиальное значение для разработки достаточно полных и адекватных теоретических и численных моделей таких сложных явлений, как мощные плазменные возмущения в ионосфере, имеет предварительное лабораторное физическое моделирование основных процессов, определяющих эти явления. Показано, что наиболее близким объектом для такого моделирования является лазерная плазма. Приведены результаты соответствующих теоретических и экспериментальных исследований и показана их научная и практическая значимость. Дан краткий обзор работ последних лет по использованию лазерного излучения для лабораторного физического моделирования процессов воздействия ядерного взрыва на астроидные материалы.
В результате выполненного в обзоре анализа удалось выделить и предварительно сформулировать некоторые интересные и весомые в научном и прикладном отношении вопросы, которые необходимо исследовать на основе уже полученных представлений: это мелкодисперсные химически активные системы, образующиеся при выбросе вулканов; маломасштабные вихревые структуры; генерация спонтанных магнитных полей из-за развития неустойчивости и их роль в трансформации энергии плазмы при ее разлете в ионосфере. Важное значение имеет также вопрос об исследовании возможного лабораторного физического моделирования теплового взрыва тел при воздействии высокоскоростного плазменного потока, который до настоящего времени имеет лишь теоретические толкования.
-
Калибровка параметров модели расчета матрицы корреспонденций для г. Москвы
Компьютерные исследования и моделирование, 2020, т. 12, № 5, с. 961-978В данной работе рассматривается задача восстановления матрицы корреспонденций для наблюдений реальных корреспонденций в г. Москве. Следуя общепринятому подходу [Гасников и др., 2013], транспортная сеть рассматривается как ориентированный граф, дуги которого соответствуют участкам дороги, а вершины графа — районы, из которых выезжают / в которые въезжают участники движения. Число жителей города считается постоянным. Задача восстановления матрицы корреспонденций состоит в расчете всех корреспонденций израйона $i$ в район $j$.
Для восстановления матрицы предлагается использовать один из наиболее популярных в урбанистике способов расчета матрицы корреспонценций — энтропийная модель. В работе, в соответствии с работой [Вильсон, 1978], приводится описание эволюционного обоснования энтропийной модели, описывается основная идея перехода к решению задачи энтропийно-линейного программирования (ЭЛП) при расчете матрицы корреспонденций. Для решения полученной задачи ЭЛП предлагается перейти к двойственной задаче и решать задачу относительно двойственных переменных. В работе описывается несколько численных методов оптимизации для решения данной задачи: алгоритм Синхорна и ускоренный алгоритм Синхорна. Далее приводятся численные эксперименты для следующих вариантов функций затрат: линейная функция затрат и сумма степенной и логарифмической функции затрат. В данных функциях затраты представляют из себя некоторую комбинацию среднего времени в пути и расстояния между районами, которая зависит от параметров. Для каждого набора параметров функции затрат рассчитывается матрица корреспонденций и далее оценивается качество восстановленной матрицы относительно известной матрицы корреспонденций. Мы предполагаем, что шум в восстановленной матрице корреспонденций является гауссовским, в результате в качестве метрики качества выступает среднеквадратичное отклонение. Данная задача представляет из себя задачу невыпуклой оптимизации. В статье приводится обзор безградиенных методов оптимизации для решения невыпуклых задач. Так как число параметров функции затрат небольшое, для определения оптимальных параметров функции затрат было выбрано использовать метод перебора по сетке значений. Таким образом, для каждого набора параметров рассчитывается матрица корреспонденций и далее оценивается качество восстановленной матрицы относительно известной матрицы корреспонденций. Далее по минимальному значению невязки для каждой функции затрат определяется, для какой функции затрат и при каких значениях параметров восстановленная матрица наилучшим образом описывает реальные корреспонденции.
Журнал индексируется в Scopus
Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"