Текущий выпуск Номер 2, 2025 Том 17

Все выпуски

Результаты поиска по 'обработка данных':
Найдено статей: 109
  1. В работе решается задача вычисления параметров случайного сигнала в условиях распределения Райса на основе принципа максимума правдоподобия в предельных случаях большого и малого значения отношения сигнала к шуму. Получены аналитические формулы для решения системы уравнений максимума правдоподобия для искомых параметров сигнала и шума как для однопараметрического приближения, когда рассчитывается только один параметр задачи — величина сигнала, в предположении априорной известности второго параметра — дисперсии шума, так и для двухпараметрической задачи, когда оба параметра априорно неизвестны. Непосредственное вычисление искомых параметров сигнала и шума по формулам позволяет избежать необходимости ресурсоемкого численного решения системы нелинейных уравнений и тем самым оптимизировать время компьютерной обработки сигналов и изображений. Представлены результаты компьютерного моделирования задачи, подтверждающие теоретические выводы. Задача является значимой для целей обработки райсовских данных, в частности, в системах магнитно-резонансной визуализации.

    Просмотров за год: 2.
  2. Смирнова О., Коня Б., Кэмерон Д., Нильсен Й.К., Филипчич А.
    ARC-CE: новости и перспективы
    Компьютерные исследования и моделирование, 2015, т. 7, № 3, с. 407-414

    Вычислительный элемент ARC приобретает всё большую популярность в инфраструктурах WLCG и EGI, и используется не только в контексте систем Грид, но и как интерфейс к суперкомпьютерам и облачным ресурсам. Развитие и поддержка ARC опирается на вклады членов пользовательского сообщества, что помогает идти в ногу со всеми изменениями в сфере распределённых вычислений. Перспективы развития ARC тесно связаны с требованиями обработки данных БАК, в любых их проявлениях. ARC также используется и для нужд небольших научных сообществ, благодаря государственным вычислительным инфраструктурам в различных странах. Таким образом, ARC представляет собой эффективное решение для создания распределённых вычислительных инфраструктур, использующих разнообразные ресурсы.

  3. В работе решается двухпараметрическая задача совместного расчета параметров сигнала и шума в условиях распределения Райса методами математической статистики: методом максимума правдоподобия и вариантами метода моментов. Рассматриваемые варианты метода моментов включают в себя совместный расчет сигнала и шума на основе измерений 2-го и 4-го моментов (ММ24) и на основе измерений 1-го и 2-го моментов (ММ12). В рамках каждого из рассматриваемых методов получены в явном виде системы уравнений для искомых параметров сигнала и шума. Важный математический результат проведенного исследования состоит в том, что решение системы двух нелинейных уравнений с двумя неизвестными — искомыми параметрами сигнала и шума — сведено к решению одного уравнения с одной неизвестной, что важно с точки зрения как теоретического исследования метода, так и его практического применения, позволяя существенно сократить необходимые для реализации метода вычислительные ресурсы. Задача является значимой для целей обработки райсовских данных, в частности, в системах магнитно-резонансной визуализации. В результате проведенного теоретического анализа получен важный практический вывод: решение двухпараметрической задачи не приводит к увеличению требуемых вычислительных ресурсов по сравнению с однопараметрическим приближением. Теоретические выводы подтверждаются результатами численного эксперимента.

    Просмотров за год: 2. Цитирований: 2 (РИНЦ).
  4. Иванов С.Д.
    Интерактивный реестр геосенсоров на основе веб-приложения
    Компьютерные исследования и моделирование, 2016, т. 8, № 4, с. 621-632

    Выбор и корректное использование инструмента минеральной геотермобарометрии — геосенсора — является сложной задачей из-за большого разнообразия существующих сенсоров, с одной стороны, и наличия специфических требований к их использованию с другой. Для снижения трудоемкости и обеспечения информационной поддержки использования геосенсоров в статье предлагается организация набора геосенсоров в рамках компьютерной системы, называемой интерактивным реестром. В статье дается формальное описание термодинамического геосенсора как функции состава минералов и независимых параметров, а также рассматриваются основные этапы получения оценок давления и температуры, общие для всех сенсоров: переход к коэффициентам формул, расчет дополнительных параметров и непосредственное вычисление искомого значения. Рассматриваются существующие программы — коллекции геосенсоров, выполненные как в виде отдельных приложений, так и в виде электронных таблиц, анализируются достоинства и недостатки этих подходов. Дается описание справочной информации, необходимой для использования геосенсора: в минеральном парагенезисе, в точности и пределах значений параметров, в литературной ссылке и др. Предлагается реализации реестра геосенсоров на базе веб-приложения, использующего технологию вики. Применение технологии вики позволяет эффективно организовать плохо формализуемую справочную информацию о сенсоре и его алгоритм, записанный на языке программирования в рамках единой информационной системы. Для структурирования информации используются ссылки, пространства имен и вики-разметка. В статье рассматривается реализация данного приложения на основе вики-системы DokuWiki и специально разработанного RESTful-сервера, позволяющего пользователю использовать геосенсоры, описанные в реестре для обработки собственных данных. В качестве языка описания геосенсоров в приложении используется язык R, для выполнения расчетов используется сервер RServe. Для контроля корректности работы сенсоров каждый из них снабжается юнит-тестом. Пользовательский интерфейс приложения разработан в виде плагинов к системе DokuWiki. Приводится пример использования разработанного приложения. В заключение рассматриваются вопросы безопасности и производительности разработанного приложения, а также возможность его масштабирования.

    Просмотров за год: 5.
  5. Билятдинов К.З., Досиков В.С., Меняйло В.В.
    Совершенствование метода парных сравнений для реализации в компьютерных программах, применяемых при оценке качества технических систем
    Компьютерные исследования и моделирование, 2021, т. 13, № 6, с. 1125-1135

    Представлен усовершенствованный метод парных сравнений, в котором посредством табличных форм систематизированы правила логических выводов при сравнении технических систем и формулы проверочных значений. Для этого сформулированы рациональные правила логических выводов при парном сравнении систем. С целью проверки результатов оценки на непротиворечивость введены понятия количества баллов, набранных одной системой, и коэффициента качества систем, а также разработаны формулы расчетов. Для целей практического использования данного метода при разработке программ для ЭВМ предлагаются формализованные варианты взаимосвязанных таблиц: таблица обработки и систематизации экспертной информации, таблица возможных логических выводов по результатам сравнения заданного количества технических систем и таблица проверочных значений при использовании метода парных сравнений при оценке качества определенного количества технических систем. Таблицы позволяют более рационально организовать процедуры обработки информации и в значительной степени исклю- чить влияние ошибок при вводе данных на результаты оценки качества технических систем. Основной положительный эффект от внедрения усовершенствованного метода парных сравнений состоит в существенном сокращении времени и ресурсов на организацию работы с экспертами, обработку экспертной информации, а также на подготовку и проведение дистанционного опроса экспертов по сети Интернет или локальной вычислительной сети предприятия (организации) за счет рационального использования исходных данных о качестве оцениваемых систем. Предлагаемый усовершенствованный метод реали- зован в программах для ЭВМ, предназначенных для оценки эффективности и устойчивости больших технических систем.

  6. Яковлева Т.В.
    Статистическое распределение фазы квазигармонического сигнала: основы теории и компьютерное моделирование
    Компьютерные исследования и моделирование, 2024, т. 16, № 2, с. 287-297

    В работе представлены результаты фундаментального исследования, направленного на теоретическое изучение и компьютерное моделирование свойств статистического распределения фазы квазигармонического сигнала, формируемого в результате воздействия гауссовского шума на исходно гармонический сигнал. Методами математического анализа получены в явном виде формулы для основных характеристик данного распределения — функции распределения, функции плотности вероятности, функции правдоподобия. В результате проведенного компьютерного моделирования проанализированы зависимости данных функций от параметров распределения фазы. В работе разработаны и обоснованы методы оценивания параметров распределения фазы, несущих информацию об исходном, не искаженном шумом сигнале. Показано, что задача оценивания исходного значения фазы квазигармонического сигнала может эффективно решаться простым усреднением результатов выборочных измерений фазы, в то время как для решения задачи оценивания второго параметра распределения фазы — параметра уровня сигнала относительно шума — предлагается использовать метод максимума правдоподобия. В работе представлены графические материалы, полученные путем компьютерного моделирования основных характеристик исследуемого статистического распределения фазы. Существование и единственность максимума функции правдоподобия позволяют обосновать возможность и эффективность решения задачи оценивания уровня сигнала относительно уровня шума методом максимума правдоподобия. Развиваемый в работе метод оценивания уровня незашумленного сигнала относительно уровня шума, т.е. параметра, характеризующего интенсивность сигнала, на основании измерений фазы сигнала является оригинальным, принципиально новым, открывающим перспективы использования фазовых измерений как инструмента анализа стохастических данных. Данное исследование является значимым для решения задач расчета фазы и уровня сигнала методами статистической обработки выборочных фазовых измерений. Предлагаемые методы оценивания параметров распределения фазы квазигармонического сигнала могут использоваться при решении различных научных и прикладных задач, в частности, в таких областях, как радиофизика, оптика, радиолокация, радионавигация, метрология.

  7. Зароченцев А.К., Стифоров Г.Г.
    Обновления аппаратно-программной базы ALICE перед вторым запуском Большого адронного коллайдера
    Компьютерные исследования и моделирование, 2015, т. 7, № 3, с. 415-419

    В докладе представлен ряд новостей и обновлений ALICE computing к RUN2 и RUN3.

    В их числе:

    – ввод в работу новой системы EOS;

    – переход к файловой системе CVMFS для хранения ПО;

    – план решения проблемы Long Term Data Preservation;

    – обзор концепции “O square”, совмещающей офлайн- и онлайн-обработку данных;

    – обзор существующих моделей использования виртуальных облаков для обработки данных ALICE.

    Ряд нововведений показан на примере российских сайтов.

    Ключевые слова: GRID, ALICE, CERN, LHC, WLCG, CVMFS, виртуализация.
    Просмотров за год: 2.
  8. Эффективность производственного процесса непосредственно зависит от качества управления технологией, которая, в свою очередь, опирается на точность и оперативность обработки контрольно- измерительной информации. Разработка математических методов исследования системных связей и закономерностей функционирования и построение математических моделей с учетом структурных особенностей объекта исследований, а также написание программных продуктов для реализации данных методов являются актуальными задачами. Практика показала, что список параметров, имеющих место при исследовании сложного объекта современного производства, варьируется от нескольких десятков до нескольких сот наименований, причем степень воздействия каждого из факторов в начальный момент не ясна. Приступать к работе по непосредственному определению модели в этих условиях нельзя — объем требуемой информации может оказаться слишком велик, причем бóльшая часть работы по сбору этой информации будет проделана впустую из-за того, что степень влияния на параметры оптимизации большинства факторов из первоначального списка окажется пренебрежимо малой. Поэтому необходимым этапом при определении модели сложного объекта является работа по сокращению размерности факторного пространства. Большинство промышленных производств являются групповыми иерархическими процессами массового и крупносерийного производства, характеризующимися сотнями факторов. (Для примера реализации математических методов и апробации построенных моделей в основу были взяты данные Молдавского металлургического завода.) С целью исследования системных связей и закономерностей функционирования таких сложных объектов обычно выбираются несколько информативных параметров и осуществляется их выборочный контроль. В данной статье описывается последовательность приведения исходных показателей технологического процесса выплавки стали к виду, пригодному для построения математической модели с целью прогнозирования, внедрения новых видов стали и создание основы для разработки системы автоматизированного управления качеством продукции. В процессе преобразования выделяются следующие этапы: сбор и анализ исходных данных, построение таблицы слабокоррелированных параметров, сокращение факторного пространства с помощью корреляционных плеяд и метода весовых коэффициентов. Полученные результаты позволяют оптимизировать процесс построения модели многофакторного процесса.

    Просмотров за год: 6. Цитирований: 1 (РИНЦ).
  9. Усанов М.С., Кульберг Н.С., Морозов С.П.
    Разработка алгоритма анизотропной нелинейной фильтрации данных компьютерной томографии с применением динамического порога
    Компьютерные исследования и моделирование, 2019, т. 11, № 2, с. 233-248

    В статье рассматривается разработка алгоритма шумоподавления на основе анизотропной нелинейной фильтрации данных. Анализ отечественной и зарубежной литературы показал, что наиболее эффективные алгоритмы шумоподавления данных рентгеновской компьютерной томографии применяют комплекс нелинейных методик анализа и обработки данных, таких как билатеральная, адаптивная, трехмерная фильтрации. Однако комбинация таких методик редко применяется на практике ввиду большого времени обработки данных. В связи с этим было принято решение разработать эффективный и быстродейственный алгоритм шумоподавления на основе упрощенных билатеральных фильтров с трехмерным накоплением данных. Алгоритм был разработан на языке C++11 в программной среде Microsoft Visual Studio 2015. Основным отличием разработанного алгоритма шумоподавления является применение в нем улучшенной математической модели шума на основе распределения Пуассона и Гаусса от логарифмической величины, разработанной ранее. Это позволило точнее определить уровень шума и тем самым порог обработки данных. В результате работы алгоритма шумоподавления были получены обработанные данные компьютерной томографии с пониженным уровнем шума. При визуальной оценке работы алгоритма были отмечены повышенная информативность обработанных данных по сравнению с оригиналом, четкость отображения гомогенных областей и значительное сокращение шума в областях обработки. При оценке численных результатов обработки было выявлено снижение уровня среднеквадратичного отклонения более чем в 6 раз в областях, подвергшихся шумоподавлению, а высокие показатели коэффициента детерминации показали, что данные не подверглись искажению и изменились только из-за удаления шумов. Применение разработанного универсального динамического порога, принцип работы которого основан на пороговых критериях, позволил снизить уровень шума во всем массиве данных более чем в 6 раз. Динамический порог хорошо вписывается как в разработанный алгоритм шумоподавления на основе анизотропной нелинейной фильтрации, так и другой алгоритм шумоподавления. Алгоритм успешно функционирует в составе рабочей станции MultiVox, получил высокую оценку своей работы от специалистов-рентгенологов, а также готовится к внедрению в единую радиологическую сеть города Москвы в качестве модуля.

    Просмотров за год: 21.
  10. Зацерковный А.В., Нурминский Е.А.
    Нейросетевой анализ транспортных потоков городских агломераций на основе данных публичных камер видеообзора
    Компьютерные исследования и моделирование, 2021, т. 13, № 2, с. 305-318

    Адекватное моделирование сложной динамики городских транспортных потоков требует сбора больших объемов данных для определения характера соответствующих моделей и их калибровки. Вместе с тем оборудование специализированных постов наблюдения является весьма затратным мероприятием и не всегда технически возможно. Совокупность этих факторов приводит к недостаточному фактографическому обеспечению как систем оперативного управления транспортными потоками, так и специалистов по транспортному планированию с очевидными последствиями для качества принимаемых решений. В качестве способа обеспечить массовый сбор данных хотя бы для качественного анализа ситуаций достаточно давно применяется обзорные видеокамеры, транслирующие изображения в определенные ситуационные центры, где соответствующие операторы осуществляют контроль и управление процессами. Достаточно много таких обзорных камер предоставляют данные своих наблюдений в общий доступ, что делает их ценным ресурсом для транспортных исследований. Вместе с тем получение количественных данных с таких камер сталкивается с существенными проблемами, относящимися к теории и практике обработки видеоизображений, чему и посвящена данная работа. В работе исследуется практическое применение некоторых мейнстримовских нейросетевых технологий для определения основных характеристик реальных транспортных потоков, наблюдаемых камерами общего доступа, классифицируются возникающие при этом проблемы и предлагаются их решения. Для отслеживания объектов дорожного движения применяются варианты сверточных нейронных сетей, исследуются способы их применения для определения базовых характеристик транспортных потоков. Простые варианты нейронной сети используются для автоматизации при получении обучающих примеров для более глубокой нейронной сети YOLOv4. Сеть YOLOv4 использована для оценки характеристик движения (скорость, плотность потока) для различных направлений с записей камер видеонаблюдения.

Страницы: « первая предыдущая следующая последняя »

Журнал индексируется в Scopus

Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"

Международная Междисциплинарная Конференция МАТЕМАТИКА. КОМПЬЮТЕР. ОБРАЗОВАНИЕ.