Текущий выпуск Номер 5, 2025 Том 17

Все выпуски

Результаты поиска по 'обработка данных':
Найдено статей: 116
  1. От редакции
    Компьютерные исследования и моделирование, 2023, т. 15, № 3, с. 485-489
  2. От редакции
    Компьютерные исследования и моделирование, 2023, т. 15, № 6, с. 1415-1418
  3. От редакции
    Компьютерные исследования и моделирование, 2024, т. 16, № 4, с. 821-823
  4. От редакции
    Компьютерные исследования и моделирование, 2024, т. 16, № 5, с. 1037-1040
  5. От редакции
    Компьютерные исследования и моделирование, 2025, т. 17, № 2, с. 175-177
  6. От редакции
    Компьютерные исследования и моделирование, 2025, т. 17, № 4, с. 525-528
  7. От редакции
    Компьютерные исследования и моделирование, 2025, т. 17, № 5, с. 757-760
  8. В работе развивается теория нового, так называемого двухпараметрического подхода к анализу и обработке случайных сигналов. Проведены математическое моделирование и сопоставление результатов решения задачи в условиях статистических моделей Гаусса и Райса. Дается обоснование применимости статистической модели Райса в условиях анализа огибающей измеряемого сигнала в задачах обработки данных и изображений. Развит и теоретически обоснован метод решения задачи шумоподавления и восстановления райсовского сигнала посредством одновременного вычисления двух статистических параметров — величины математического ожидания исходного сигнала и дисперсии шума — на основе принципа максимума правдоподобия. Проанализированы особенности функции правдоподобия для распределения Райса и вытекающие из них возможности оценки параметров сигнала и шума.

    Просмотров за год: 2. Цитирований: 4 (РИНЦ).
  9. Белеан Б., Белеан К., Флоаре К., Вароди К., Бот А., Адам Г.
    Сеточные высокопроизводительные вычисления в получении спутниковых изображний на примере фильтра Перона–Малик
    Компьютерные исследования и моделирование, 2015, т. 7, № 3, с. 399-406

    В данной работе рассматривается подход к эффективной обработке спутниковых изображений, который включает в себя два этапа. Первый этап заключается в распределении быстро взрастающего объема спутниковых данных, полученных через Грид-инфраструктуру. Второй этап включает в себя ускорение решения отдельных задач, относящихся к обработке изображений с помощью внедрения кодов, которые способствуют интенсивному использованию пространственно-временного параллелизма. Примером такого кода является обработка изображений с помощью итерационного фильтра Перона–Малик в рамках специального применения архитектуры аппаратного обеспечения ППВМ (FPGA).

    Просмотров за год: 3.
  10. Матюшкин И.В., Заплетина М.А.
    Обзор по тематике клеточных автоматов на базе современных отечественных публикаций
    Компьютерные исследования и моделирование, 2019, т. 11, № 1, с. 9-57

    Проведен анализ отечественных публикаций за 2013–2017 гг. включительно, посвященных клеточным автоматам (КА). Большая их часть связана с математическим моделированием. Наукометрическими графиками за 1990–2017 гг. доказана актуальность тематики. Обзор позволяет выделить персоналии и научные направления/школы в современной российской науке, выявить их оригинальность или вторичность по сравнению с мировым уровнем. За счет выбора национальной, а не мировой, базы публикаций обзор претендует на полноту (из 526 просмотренных ссылок научным значением обладают около 200).

    В приложении к обзору даются первичные сведения о КА — игра «Жизнь», теорема о садах Эдема, элементарные КА (вместе с диаграммой де Брюина), блочные КА Марголуса, КА с альтернацией. Причем акцентируется внимание на трех важных для моделирования семантиках КА — традициях фон Неймана, Цузе и Цетлина, а также показывается родство с концепциями нейронных сетей и сетей Петри. Выделены условные 10 работ по КА, с которыми должен быть знаком любой специалист по КА. Некоторые важные работы 1990-х гг. и более поздние перечислены во введении.

    Затем весь массив публикаций разбит на рубрики: «Модификации КА и другие сетевые модели» (29 %), «Математические свойства КА и связь с математикой» (5 %), «Аппаратные реализации» (3 %), «Программные реализации» (5 %), «Обработка данных, распознавание и криптография» (8 %), «Механика, физика и химия» (20 %), «Биология, экология и медицина» (15 %), «Экономика, урбанистика и социология» (15 %). В скобках указана доля тематики в массиве. Отмечается рост публикаций по КА в гуманитарной сфере, а также появление гибридных подходов, уводящих в сторону от классических КА.

    Просмотров за год: 58.
Страницы: « первая предыдущая следующая последняя »

Журнал индексируется в Scopus

Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"

Международная Междисциплинарная Конференция МАТЕМАТИКА. КОМПЬЮТЕР. ОБРАЗОВАНИЕ.