Текущий выпуск Номер 2, 2025 Том 17

Все выпуски

Результаты поиска по 'нелинейность':
Найдено статей: 184
  1. Божко А.Н.
    Моделирование процессов разборки сложных изделий
    Компьютерные исследования и моделирование, 2022, т. 14, № 3, с. 525-537

    Работа посвящена моделированию процессов разборки сложных изделий в системах автоматизированного проектирования. Возможность демонтажа изделия в заданной последовательности формируется на ранних этапах проектирования, а реализуется в конце жизненного цикла. Поэтому современные системы автоматизированного проектирования должны иметь инструменты для оценки сложности демонтажа деталей и сборочных единиц. Предложена гиперграфовая модель механической структуры изделия. Показано, что математическим описанием когерентных и секвенциальных операций разборки является нормальное разрезание ребра гиперграфа. Доказана теорема о свойствах нормальных разрезаний. Данная теорема позволяет организовать простую рекурсивную процедуру генерации всех разрезаний гиперграфа. Множество всех разрезаний представляется в виде И–ИЛИ-дерева. Дерево содержит информацию о планах разборки изделия и его частей. Предложены математические описания процессов разборки различного типа: полной, неполной, линейной, нелинейной. Показано, что решающий граф И–ИЛИ-дерева представляет собой модель разборки изделия и всех его составных частей, полученных в процессе демонтажа. Рассмотрена важная характеристика сложности демонтажа деталей — глубина вложения. Разработан способ эффективного расчета оценки снизу данной характеристики.

  2. Веричев Н.Н., Веричев С.Н., Ерофеев В.И.
    Стационарные состояния и бифуркации в одномерной активной среде осцилляторов
    Компьютерные исследования и моделирование, 2023, т. 15, № 3, с. 491-512

    В предлагаемой статье приводятся результаты аналитического и компьютерного исследования коллективных динамических свойств цепочки автоколебательных систем (условно — осцилляторов). Предполагается, что связи отдельных элементов цепочки являются невзаимными, однонаправленными. Точнее, предполагается, что каждый элемент цепочки находится под воздействием предыдущего, в то время как обратная реакция отсутствует (физически несущественна). В этом состоит главная особенность цепочки. Данную систему можно интерпретировать как активную дискретную среду с однонаправленным переносом, в частности переносом вещества. Подобные цепочки могут являться математическими моделями реальных систем с решеточной структурой, имеющих место в самых различных областях естествознания и техники: в физике, химии, биологии, радиотехнике, экономике и др. Также они могут быть моделями технологических и вычислительных процессов. В качестве элементов решетки выбраны нелинейные автоколебательные системы (условно — осцилляторы) с широким спектром потенциально возможных индивидуальных автоколебаний: от периодических до хаотических. Это позволяет исследовать различные динамические режимы цепочки от регулярных до хаотических, меняя параметры элементов и не меняя природу самих элементов. Совместное применение качественных методов теории динамических систем и качественно-численных методов позволяет получить обозримую картину всевозможных динамических режимов цепочки. Исследуются условия существования и устойчивости пространственно однородных динамических режимов (детерминированных и хаотических) цепочки. Аналитические результаты иллюстрированы численным экспериментом. Исследуются динамические режимы цепочки при возмущениях параметров на ее границе. Показывается возможность управления динамическими режимами цепочки путем включения необходимого возмущения на границе. Рассматриваются различные случаи динамики цепочек, составленных из неоднородных (различных по своим параметрам) элементов. Аналитически и численно исследуется глобальная (всех осцилляторов цепочки) хаотическая синхронизация.

  3. Строганов А.В., Аристов В.В.
    Вероятностные аспекты метода «компьютерной аналогии» для решения дифференциальных уравнений
    Компьютерные исследования и моделирование, 2009, т. 1, № 1, с. 21-31

    Развивается и обосновывается метод, позволяющий получить явную форму решения в виде отрезков рядов по степеням шага аргумента. Формализуется алгоритм, элементы которого используют аналогию с представлением и обработкой чисел в компьютере: ограничение в разрядной сетке и переброс разрядов. При перебросе разряда выявляются фрактально-стохастические свойства алгоритма, дающие возможность осреднять неизвестные промежуточные шаги в старших разрядах. Строятся решения нелинейных дифференциальных уравнений и системы уравнений.

    Просмотров за год: 3. Цитирований: 1 (РИНЦ).
  4. Резаев Р.О., Трифонов А.Ю., Шаповалов А.В.
    Система Эйнштейна−Эренфеста типа (0, M) и асимптотические решения многомерного нелинейного уравнения Фоккера−Планка−Колмогорова
    Компьютерные исследования и моделирование, 2010, т. 2, № 2, с. 151-160

    Рассмотрен формализм квазиклассического приближения относительно малого коэффициента диффузии D, D→0, для многомерного уравнения Фоккера−Планка−Колмогорова с нелокальным и нелинейным вектором сноса в классе траекторно-сосредоточенных функций. Получена динамическая система Эйнштейна−Эренфеста типа (0, M), описывающая движение точки, в окрестности которой локализованы квазиклассические асимптотические решения. Построено семейство квазиклассических асимптотик с точностью O(D(M+1)/2).

    Просмотров за год: 2.
  5. Борина М.Ю., Полежаев А.А.
    Диффузионная неустойчивость в трехкомпонентной модели типа «реакция–диффузия»
    Компьютерные исследования и моделирование, 2011, т. 3, № 2, с. 135-146

    В данной работе проведено исследование возникновения диффузионной неустойчивости в системе из трех уравнений типа «реакция–диффузия». В общем виде получены условия как тьюринговской, так и волновой неустойчивостей. Выявлены качественные свойства, которыми должна обладать система для того, чтобы в ней могла произойти та или другая бифуркация. В численных экспериментах показано, что при выполнении соответствующих условий в нелинейной модели возникают структуры, которые предсказываются линейным анализом.

    Просмотров за год: 1. Цитирований: 7 (РИНЦ).
  6. Чуйко С.М., Старкова О.В., Кулиш П.В.
    Периодическая задача для уравнения Хилла в случае параметрического резонанса
    Компьютерные исследования и моделирование, 2014, т. 6, № 1, с. 27-43

    Найдены необходимые и достаточные условия существования решений нелинейной неавтономной периодической задачи для уравнения типа Хилла в случае параметрического резонанса. Характерной особенностью поставленной задачи является необходимость нахождения как искомого решения, так и соответствующей собственной функции, обеспечивающей разрешимость периодической задачи для уравнения типа Хилла в случае параметрического резонанса. Для построения решений периодической задачи для уравнения типа Хилла и соответствующей собственной функции в случае параметрического резонанса предложены итерационные схемы, построенные методу простых итераций, а также с использованием техники наименьших квадратов.

    Просмотров за год: 1.
  7. Чуканов С.Н., Першина Е.Л.
    Формирование оптимального управления нелинейным динамическим объектом на основе модели Такаги–Сугено
    Компьютерные исследования и моделирование, 2015, т. 7, № 1, с. 51-59

    В работе рассмотрен алгоритм нечеткой системы управления существенно нелинейным динамическим объектом. Для решения нелинейной задачи оптимального управления предлагается использовать линейно-квадратичное регулирование (LQR — linear quadratic regulator) с моделью Такаги–Сугено (Takagi–Sugeno). Алгоритм может быть использован для проектирования систем оптимального управления детерминированными нелинейными объектами. Предложено использование алгоритма функционирования оптимальной системы управления для управления вращательным движением летательного аппарата.

    Просмотров за год: 2.
  8. В работе решается задача вычисления параметров случайного сигнала в условиях распределения Райса на основе принципа максимума правдоподобия в предельных случаях большого и малого значения отношения сигнала к шуму. Получены аналитические формулы для решения системы уравнений максимума правдоподобия для искомых параметров сигнала и шума как для однопараметрического приближения, когда рассчитывается только один параметр задачи — величина сигнала, в предположении априорной известности второго параметра — дисперсии шума, так и для двухпараметрической задачи, когда оба параметра априорно неизвестны. Непосредственное вычисление искомых параметров сигнала и шума по формулам позволяет избежать необходимости ресурсоемкого численного решения системы нелинейных уравнений и тем самым оптимизировать время компьютерной обработки сигналов и изображений. Представлены результаты компьютерного моделирования задачи, подтверждающие теоретические выводы. Задача является значимой для целей обработки райсовских данных, в частности, в системах магнитно-резонансной визуализации.

    Просмотров за год: 2.
  9. Чуйко С.М., Несмелова (Старкова) О.В., Сысоев Д.В.
    Нелинейная матричная краевая задача в случае параметрического резонанса
    Компьютерные исследования и моделирование, 2015, т. 7, № 4, с. 821-833

    Найдены необходимые и достаточные условия существования решений нелинейной матричной краевой задачи для системы обыкновенных дифференциальных уравнений в случае параметрического резонанса. Построена сходящаяся итерационная схема для нахождения приближений к решению нелинейной матричной краевой задачи для системы обыкновенных дифференциальных уравнений в случае параметрического резонанса. В качестве примера применения построенной итерационной схемы найдены приближения к решениями периодической краевой задачи для уравнения типа Риккати с параметрическим возмущением. Для контроля точности найденных приближений к решениямперио дической краевой задачи для уравнения типа Риккати использованы невязки этих приближений.

    Просмотров за год: 2.
  10. Паровик Р.И.
    Математическое моделирование эредитарного осциллятора
    Компьютерные исследования и моделирование, 2015, т. 7, № 5, с. 1001-1021

    В работе рассматривается эредитарный осциллятор, который характеризуется осцилляционным уравнением с производными дробных порядков $\beta$ и $\gamma$ в смысле Герасимова–Капуто. С помощью преобразования Лапласа были получены аналитические решения и функция Грина, которые определяются через специальные функции типа Миттаг-Леффлера и обобщенной функции Райта. Доказано, что при фиксированных значениях $\beta = 2$ и $\gamma = 1$ найденное решение переходит в классическое решение для гармонического осциллятора. Согласно полученным решениям были построены расчетные кривые и фазовые траектории эредитарного колебательного процесса. Установлено, что в случае внешнего периодического воздействия на эредитарный осциллятор могут возникать эффекты, присущие классическим нелинейным осцилляторам.

    Просмотров за год: 4. Цитирований: 12 (РИНЦ).
Страницы: « первая предыдущая следующая последняя »

Журнал индексируется в Scopus

Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"

Международная Междисциплинарная Конференция МАТЕМАТИКА. КОМПЬЮТЕР. ОБРАЗОВАНИЕ.