Текущий выпуск Номер 5, 2025 Том 17

Все выпуски

Результаты поиска по 'модель функции':
Найдено статей: 187
  1. Шумов В.В.
    Моделирование специальных действий и борьбы с терроризмом
    Компьютерные исследования и моделирование, 2024, т. 16, № 6, с. 1467-1498

    Специальные действия (партизанские, антипартизанские, разведывательно-диверсионные, подрывные, контртеррористические, контрдиверсионные и др.) организуются и проводятся силами обеспечения правопорядка и вооруженными силами и направлены на защиту граждан и обеспечение национальной безопасности. С начала 2000-х гг. проблематика специальных действий привлекла внимание специалистов в области моделирования, социологов, физиков и представителей других наук. В настоящей статье даны обзор и характеристика работ в области моделирования специальных действий и борьбы с терроризмом. Работы классифицированы по методам моделирования (описательные, оптимизационные и теоретико-игровые), по видам и этапам действий, фазам управления (подготовка и ведение деятельности). Во втором разделе представлена классификация методов и моделей специальных действий и борьбы с терроризмом, дан краткий обзор описательных моделей. Рассмотрены метод географического профилирования, сетевые игры, модели динамики специальных действий, функция победы в боевых и специальных действиях (зависимость вероятности победы от соотношения сил и средств сторон). В третьем разделе рассмотрены игра «атакующий – защитник» и ее расширения: игра Штакельберга и игра безопасности Штакельберга, а также вопросы их применения в задачах обеспечения безопасности. В игре «атакующий – защитник» и играх безопасности известные работы классифицируются по следующим основаниям: последовательность ходов, количество игроков и их целевые функции, временной горизонт игры, степень рациональности игроков и их отношение к риску, степень информированности игроков. Четвертый раздел посвящен описанию игр патрулирования на графе с дискретным временем и одновременным выбором сторонами своих действий (для поиска оптимальных стратегий вычисляется равновесие Нэша). В пятом разделе рассмотрены теоретико-игровые модели обеспечения транспортной безопасности как приложения игр безопасности Штакельберга. Последний раздел посвящен обзору и характеристике ряда моделей обеспечения пограничной безопасности на двух фазах управления: подготовка и ведение деятельности. Рассмотрен пример эффективного взаимодействия подразделений береговой охраны с университетскими исследователями. Перспективными направлениями дальнейших исследований являются следующие: во-первых, моделирование контртеррористических и специальных операций по нейтрализации террористических и диверсионных групп с привлечением разноведомственных и разнородных сил и средств, во-вторых, комплексирование моделей по уровням и этапам циклов деятельности; в-третьих, разработка теоретико-игровых моделей борьбы с морским терроризмом и пиратством.

  2. В статье рассматриваются модели «хищник – жертва» и проводится глобальный бифуркационный анализ системы Лесли – Говера с аддитивным эффектом Олли и упрощенным функциональным откликом Холлинга III типа, которая моделирует динамику популяций хищников и их жертв в заданной экологической или биомедицинской системе. В данной системе используется наиболее распространенная математическая форма выражения эффекта (или закона) Олли через функцию роста жертвы. Закон Олли гласит, что существует вполне определенное соотношение между индивидуальной приспособленностью к условиям жизни и численностью либо плотностью индивидов данного вида, а именно: с увеличением численности популяции способность к выживанию и репродуктивная способность также увеличиваются. После алгебраических преобразований рациональную систему Лесли – Говера с аддитивным эффектом Олли и упрощенным функциональным откликом Холлинга III типа можно записать в виде квинтико-секстичной динамической системы, т.е. в виде системы с полиномами пятой и шестой степени. Используя информацию о ее особых точках и применяя наш бифуркационно-геометрический подход к качественному анализу, мы изучаем глобальные бифуркации предельных циклов квинтико-секстичной системы. Чтобы контролировать все бифуркации предельных циклов, особенно бифуркации кратных предельных циклов, необходимо знать свойства и комбинировать действия всех параметров, поворачивающих векторное поле системы. Это может быть сделано с помощью принципа окончания Уинтнера – Перко, согласно которому максимальное однопараметрическое семейство кратных предельных циклов заканчивается либо в особой точке, которая, как правило, имеет ту же кратность (цикличность), либо на сепаратрисном цикле, который также, как правило, имеет ту же кратность (цикличность). Этот принцип является следствием принципа естественного окончания, который был сформулирован для многомерных динамических систем Уинтнером, который изучал однопараметрические семейства периодических орбит ограниченной задачи трех тел и доказал, что в аналитическом случае любое однопараметрическое семейство периодических орбит может быть однозначно продолжено через любую бифуркацию, кроме бифуркации удвоения периода. Применяя планарный принцип Уинтнера – Перко, мы доказываем, что если цикличность фокуса в рассматриваемой системе равна трем, то система может иметь не более трех предельных циклов, окружающих одну особую точку.

  3. Фатьянов А.Г., Бурмин В.Ю.
    Сейсмические волновые поля в сферически-симметричной Земле с высокой детальностью. Аналитическое решение
    Компьютерные исследования и моделирование, 2025, т. 17, № 5, с. 903-922

    Получено аналитическое решение для сейсмических волновых полей в сферически-симметричной Земле. В случае произвольной слоистой среды решение, в которое входят функции Бесселя, строится с помощью дифференциальной прогонки. Для устойчивого вычисления волновых полей используется асимптотика функций Бесселя. Показано, что классическая асимптотика в случае высоких частот дает погрешность в решении. Для эффективного вычисления решения без погрешностей с высокой детальностью используется оригинальная асимптотика. Создана программа, позволяющая проводить расчеты для высокочастотных (1 герц и выше) телесейсмических волновых полей в дискретном (слоистом) шаре планетарных размеров. Расчеты можно осуществлять даже на персональных компьютерах с распараллеливанием OpenMP.

    В работе Бурмина (2019 г.) предложена сферически-симметричная модель Земли. Она характеризуется тем, что в ней внешнее ядро обладает вязкостью и, следовательно, эффективным модулем сдвига, отличным от нуля. Для этой модели Земли проведен расчет с высокой детальностью с несущей частотой в 1 герц. В результате аналитического расчета обнаружено, что впереди PKP-волн возникают высокочастотные колебания небольшой амплитуды, так называемые предвестники. Аналитический расчет показал, что теоретические сейсмограммы для этой модели Земли во многом похожи на экспериментальные данные. При этом ключевым моментом сравнения является возникновение предвестников впереди PKP-волн. Это подтверждает правильность идей, положенных в основу ее построения.

  4. В работе развивается новый математический метод решения задачи совместного расчета параметров сигнала и шума в условиях распределения Райса, основанный на комбинировании метода максимума правдоподобия и метода моментов. При этом определение искомых параметров задачи осуществляется посредством обработки выборочных измерений амплитуды анализируемого райсовского сигнала. Получена система уравнений для искомых параметров сигнала и шума, а также представлены результаты численных расчетов, подтверждающие эффективность предлагаемого метода. Показано, что решение двухпараметрической задачи разработанным методом не приводит к увеличению объема требуемых вычислительных ресурсов по сравнению с решением однопараметрической задачи. В частном случае малой величины отношения сигнала к шуму получено аналитическое решение задачи. В работе проведено исследование зависимости погрешности и разброса расчетных данных для искомых параметров от количества измерений в экспериментальной выборке. Как показали численные эксперименты, величина разброса расчетных значений искомых параметров сигнала и шума, полученных предлагаемым методом, изменяется обратно пропорционально количеству измерений в выборке. Проведено сопоставление точности оценивания искомых райсовских параметров предлагаемым методом и ранее развитым вариантом метода моментов. Решаемая в работе задача является значимой для целей обработки райсовских данных, в частности, в системах магнитно-резонансной визуализации, в системах ультразвуковой визуализации, при анализе оптических сигналов в системах дальнометрии, в радиолокации, а также при решении многих других научных и прикладных задач, адекватно описываемых статистической моделью Райса.

    Просмотров за год: 11.
  5. Мальсагов М.Х., Угольницкий Г.А., Усов А.Б.
    Борьба с экономической коррупцией при распределении ресурсов
    Компьютерные исследования и моделирование, 2019, т. 11, № 1, с. 173-185

    В теоретико-игровой постановке рассмотрена модель борьбы с коррупцией при распределении ресурсов. Система распределения ресурсов включает в свой состав одного принципала (субъект управления верхнего уровня), одного или нескольких супервайзеров (субъектов среднего уровня) и нескольких агентов (субъекты нижнего уровня). Отношения между субъектами разных уровней строятся на основе иерархии: субъект верхнего уровня воздействует (управляет) на субъектов среднего уровня, а те, в свою очередь, на субъектов нижнего уровня. Предполагается, что коррупции подвержен средний уровень управления. Агенты предлагают супервайзеру взятки, в обмен на которые он предоставляет им дополнительные доли ресурса. Предположим также, что принципал не подвержен коррупции и является бескорыстным, не преследующим частных целей. Исследование модели проведено с точки зрения как супервайзера, так и агентов. C точки зрения агентов, возникает некооперативная игра, в которой находится равновесие Нэша. При этом задачи оптимального управления для частного вида входных функций решаются аналитически с помощью принципа максимума Понтрягина. C точки зрения супервайзера, возникает игра, которая ведется в соответствии с регламентом игры Гермейера Г2t. Указан алгоритм построения равновесия. Стратегия наказания находится аналитически. Стратегия поощрения в случае входных функций общего вида находится численно. Строится дискретный аналог непрерывной модели. Предполагается, что все субъекты управления могут изменять свои стратегии поведения в одни и те же моменты времени конечное число раз. В результате от задачи максимизации своего целевого функционала супервайзер переходит к задаче максимизации целевой функции многих переменных. Для нахождения ее наибольшего значения используется метод качественно репрезентативных сценариев. Идея этого метода состоит в том, что из множества потенциально возможных сценариев управления выбираются только сценарии, позволяющие представить качественно различные пути развития системы. В результате мощность этого множества не слишком велика и удается осуществить полный перебор качественно репрезентативных сценариев и найти стратегию поощрения агентов. После ее нахождения супервайзер предлагает агентам механизм управления с обратной связью по управлению, состоящий в наказании агентов при отклонении от выбранной супервайзером стратегии и поощрении в противном случае.

    Просмотров за год: 33. Цитирований: 1 (РИНЦ).
  6. Кетова К.В., Романовский Ю.М., Русяк И.Г.
    Математическое моделирование динамики человеческого капитала
    Компьютерные исследования и моделирование, 2019, т. 11, № 2, с. 329-342

    В условиях развития современной экономики человеческий капитал является одним из главных факторов экономического роста. Формирование человеческого капитала начинается с рождения человека и продолжается в течение всей жизни, поэтому величина человеческого капитала неотделима от его носителей, что, в свою очередь, затрудняет учет данного фактора. Это привело к тому, что в настоящее время нет общепринятых методик расчета величины человеческого капитала. Можно выделить лишь несколько подходов к измерению человеческого капитала: стоимостной подход (по доходам или инвестициям) и индексный подход, из которых наиболее известен подход, разработанный под эгидой ООН.

    В данной работе поставленная задача рассматривается совместно с задачей демографической динамики, решаемой во временно-возрастной плоскости, что позволяет наиболее полно учесть влияние временных изменений демографической структуры на динамику человеческого капитала.

    Задача демографической динамики ставится в рамках модели Мак-Кендрика – фон Ферстера на основе уравнения динамики возрастного состава. Вид функций распределения рождений, смертности и миграции населения определяется на основе имеющейся статистической информации. Приводится численное решение задачи. Представлены анализ и прогноз демографических показателей. На основе задачи демографической динамики формулируется экономико-математическая модель динамики человеческого капитала. В задаче моделирования динамики человеческого капитала рассматриваются три составляющие: образовательная, составляющая здоровья и культурная (духовная) составляющая. Для описания эволюции составляющих человеческого капитала используется двумерное уравнение типа уравнения переноса. Объемы инвестиций в составляющие человеческого капитала определяются на основе расходных статей бюджета и частных расходов с учетом характерного временного жизненного цикла демографических элементов. Для прогнозирования динамики суммарной величины человеческого капитала используется одномерное кинетическое уравнение. Приводится методика расчета динамики данного фактора как функции времени. Представлены расчетные данные по динамике человеческого капитала для Российской Федерации. Как показали исследования, величина человеческого капитала интенсивно нарастала до 2008 года, в дальнейшем наступил период стабилизации, но после 2014 года имеет место отрицательная динамика данной величины.

    Просмотров за год: 34.
  7. Кащенко Н.М., Ишанов С.А., Зубков Е.В.
    Численная модель переноса в задачах неустойчивостей низкоширотной ионосферы Земли с использованием двумерной монотонизированной Z-схемы
    Компьютерные исследования и моделирование, 2021, т. 13, № 5, с. 1011-1023

    Целью работы является исследование монотонной конечно-разностной схемы второго порядка точности, созданной на основе обобщения одномерной Z-схемы. Исследование проведено для модельных уравнений переноса несжимаемой среды. В работе описано двумерное обобщение Z-схемы с нелинейной коррекцией, использующей вместо потоков косые разности, содержащие значения из разных временных слоев. Численно проверена монотонность полученной нелинейной схемы для функций-ограничителей двух видов, как для гладких решений, так и для негладких, и получены численные оценки порядка точности построенной схемы. Построенная схема является абсолютно устойчивой, но теряет свойство монотонности при превышении шага Куранта. Отличительной особенностью предложенной конечно-разностной схемы является минимальность ее шаблона.

    Построенная численная схема предназначена для моделей плазменных неустойчивостей различных масштабов в низкоширотной ионосферной плазме Земли. Одна из реальных задач, при решении которых возникают подобные уравнения, — это численное моделирование сильно нестационарных среднемасштабных процессов в земной ионосфере в условиях возникновения неустойчивости Рэлея – Тейлора и плазменных структур с меньшими масштабами, механизмами генерации которых являются неустойчивости других типов, что приводит к явлению F-рассеяния. Вследствие того, что процессы переноса в ионосферной плазме контролируются магнитным полем, в поперечном к магнитному полю направле- нии предполагается выполнение условия несжимаемости плазмы.

  8. Переварюха А.Ю.
    Модели популяционного процесса с запаздыванием и сценарий адаптационного противодействия инвазии
    Компьютерные исследования и моделирование, 2022, т. 14, № 1, с. 147-161

    Изменения численности y образующихся популяций могут развиваться по нескольким динамическим сценариям. Для стремительных биологических инвазий оказывается важным фактор времени выработки реакции противодействия со стороны биотического окружения. Известны два классических эксперимента с разным завершением противоборства биологических видов. В опытах Гаузе с инфузориями вселенный хищник после кратких осцилляций полностью уничтожал свой ресурс, так его $r$-параметр для созданных условий стал избыточен. Собственная репродуктивная активность не регулировалась дополнительными факторами и в результате становилась критичной для вселенца. В экспериментах Утиды с жуками и выпущенными паразитическими осами виды сосуществовали. В ситуации, когда популяцию с высоким репродуктивным потенциалом регулируют несколько естественных врагов, могут возникать интересные динамические эффекты, наблюдавшиеся у фитофагов в вечнозеленом лесу Австралии. Паразитические перепончатокрылые, конкурируя между собой, создают для быстро размножающихся вредителей псиллид систему регуляции с запаздыванием, когда допускается быстрое увеличение локальной популяции, но не превышающее порогового значения численности вредителя. В работе предложена модель на основе дифференциального уравнения с запаздыванием, описывающая сценарий адаптационной регуляции для популяции с большим репродуктивным потенциалом при активном, но запаздывающем противодействии с пороговой регуляцией данного вновь возникшего воздействия. За кратким максимумом следует быстрое сокращение численности, но минимизация не становится критической для популяции. Показано, что усложнение функции регуляции биотического противодействия приводит к стабилизации динамики после прохождения минимума численности быстро размножающимся видом. Для гибкой системы переходные режимы «рост/кризис» ведут к поиску нового равновесия в эволюционном противостоянии.

  9. В данной работе показаны преимущества использования алгоритмов искусственного интеллекта для планирования эксперимента, позволяющих повысить точность идентификации параметров для эластостатической модели робота. Планирование эксперимента для робота заключается в подборе оптимальных пар «конфигурация – внешняя сила» для использования в алгоритмах идентификации, включающих в себя несколько основных этапов. На первом этапе создается эластостатическая модель робота, учитывающая все возможные механические податливости. Вторым этапом выбирается целевая функция, которая может быть представлена как классическими критериями оптимальности, так и критериями, напрямую следующими из желаемого применения робота. Третьим этапом производится поиск оптимальных конфигураций методами численной оптимизации. Четвертым этапом производится замер положения рабочего органа робота в полученных конфигурациях под воздействием внешней силы. На последнем, пятом, этапе выполняется идентификация эластостатичесих параметров манипулятора на основе замеренных данных.

    Целевая функция для поиска оптимальных конфигураций для калибровки индустриального робота является ограниченной в силу механических ограничений как со стороны возможных углов вращения шарниров робота, так и со стороны возможных прикладываемых сил. Решение данной многомерной и ограниченной задачи является непростым, поэтому предлагается использовать подходы на базе искусственного интеллекта. Для нахождения минимума целевой функции были использованы следующие методы, также иногда называемые эвристическими: генетические алгоритмы, оптимизация на основе роя частиц, алгоритм имитации отжига т. д. Полученные результаты были проанализированы с точки зрения времени, необходимого для получения конфигураций, оптимального значения, а также итоговой точности после применения калибровки. Сравнение показало преимущество рассматриваемых техник оптимизации на основе искусственного интеллекта над классическими методами поиска оптимального значения. Результаты данной работы позволяют уменьшить время, затрачиваемое на калибровку, и увеличить точность позиционирования рабочего органа робота после калибровки для контактных операций с высокими нагрузками, например таких, как механическая обработка и инкрементальная формовка.

  10. Беляев А.В.
    Стохастические переходы от порядка к хаосу в метапопуляционной модели с миграцией
    Компьютерные исследования и моделирование, 2024, т. 16, № 4, с. 959-973

    Данная работа посвящена исследованию проблемы моделирования и анализа динамических режимов, как регулярных, так и хаотических, в системах связанных популяций в присутствии случайных возмущений. В качестве исходной детерминированной популяционной модели рассматривается дискретная модель Рикера. В работе исследуется динамика двух популяций, связанных миграцией. Миграция пропорциональна разнице между плотностями двух популяций с коэффициентом связи, который отвечает за силу миграционного потока. Изолированные популяционные подсистемы, не учитывающие миграцию и моделируемые отображением Рикера, демонстрируют различные динамические режимы: равновесный, периодический и хаотический. В данной работе в качестве бифуркационного параметра используется коэффициент связи, а также фиксируются параметры естественного прироста популяций, при которых одна изп одсистем находится в равновесном режиме, а во второй преобладает хаотический режим. Связывание двух популяций посредством миграции порождает новые динамические режимы, не наблюдавшиеся в изолированной модели. Целью данной статьи является анализ динамических режимов корпоративной динамики при вариации интенсивности перетоков между популяционными подсистемами. В статье представлен бифуркационный анализа ттракторов детерминированной модели двух связанных популяций, выявлены зоны моно- и бистабильности, даны примеры регулярных и хаотических аттракторов. Основной акцент данной работы сделан на сравнении устойчивости динамических режимов к случайным возмущениям в коэффициенте интенсивности миграции. Методами прямого численного моделирования выявлены и описаны индуцированные шумом переходы с периодического аттрактора на хаотический. В статье представлены результаты анализа стохастических явлений с помощью показателя Ляпунова. Показано, что в рассматриваемой модели существует зона изменения бифуркационного параметра, при котором даже с увеличением интенсивности случайных возмущений не происходит переход от порядка к хаосу. Для аналитического исследования вызванных шумом переходов применены техника функции стохастической чувствительности и метод доверительных областей. В работе показано, как с помощью этого математического аппарата можно предсказать критическую интенсивность шума, вызывающую трансформацию периодического режима в хаотический.

Страницы: « первая предыдущая следующая последняя »

Журнал индексируется в Scopus

Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"

Международная Междисциплинарная Конференция МАТЕМАТИКА. КОМПЬЮТЕР. ОБРАЗОВАНИЕ.