Все выпуски
- 2025 Том 17
- 2024 Том 16
- 2023 Том 15
- 2022 Том 14
- 2021 Том 13
- 2020 Том 12
- 2019 Том 11
- 2018 Том 10
- 2017 Том 9
- 2016 Том 8
- 2015 Том 7
- 2014 Том 6
- 2013 Том 5
- 2012 Том 4
- 2011 Том 3
- 2010 Том 2
- 2009 Том 1
-
Многоагентный протокол локального голосования для онлайнового планирования DAG
Компьютерные исследования и моделирование, 2025, т. 17, № 1, с. 29-44Планирование вычислительных рабочих процессов, представленных направленными ациклическими графами (DAG), имеет ключевое значение для многих областей информатики, таких как облачные/edge задачи с распределенной рабочей нагрузкой и анализ данных. Сложность онлайнового планирования DAG усугубляется большим количеством вычислительных узлов, задержками передачи данных, неоднородностью (по типу и вычислительной мощности) исполнителей, ограничениями предшествования, накладываемыми DAG, и неравномерностью поступления задач. В данной статье представлен мультиагентный протокол локального голосования (MLVP) — новый подход, ориентированный на динамическое распределение нагрузки при планировании DAG в гетерогенных вычислительных средах, где исполнители представлены в виде агентов. MLVP использует протокол локального голосования для достижения эффективного распределения нагрузки, формулируя проблему как дифференцированное достижение консенсуса. Алгоритм вычисляет агрегированную метрику DAG для каждой пары исполнитель – узел на основе зависимостей между узлами, доступности узлов и производительности исполнителей. Баланс этих метрик как взвешенная сумма оптимизируется с помощью генетического алгоритма для вероятностного распределения задач, что позволяет добиться эффективного распределения рабочей нагрузки за счет обмена информацией и достижения консенсуса между исполнителями всей системы и, таким образом, улучшить время выполнения. Эффективность MLVP демонстрируется путем сравнения с современным алгоритмом планирования DAG и популярными эвристиками, такими как DONF, FIFO, Min-Min и Max-Min. Численное моделирование показывает, что MLVP достигает улучшения makepsan до 70% на определенных топологиях графов и среднего сокращения makepan на 23,99% по сравнению с DONF (современная эвристика планирования DAG) на случайно сгенерированном разнообразном наборе DAG. Примечательно, что масштабируемость алгоритма подтверждается ростом производительности при увеличении числа исполнителей и узлов графа.
-
Калибровка параметров модели расчета матрицы корреспонденций для г. Москвы
Компьютерные исследования и моделирование, 2020, т. 12, № 5, с. 961-978В данной работе рассматривается задача восстановления матрицы корреспонденций для наблюдений реальных корреспонденций в г. Москве. Следуя общепринятому подходу [Гасников и др., 2013], транспортная сеть рассматривается как ориентированный граф, дуги которого соответствуют участкам дороги, а вершины графа — районы, из которых выезжают / в которые въезжают участники движения. Число жителей города считается постоянным. Задача восстановления матрицы корреспонденций состоит в расчете всех корреспонденций израйона $i$ в район $j$.
Для восстановления матрицы предлагается использовать один из наиболее популярных в урбанистике способов расчета матрицы корреспонценций — энтропийная модель. В работе, в соответствии с работой [Вильсон, 1978], приводится описание эволюционного обоснования энтропийной модели, описывается основная идея перехода к решению задачи энтропийно-линейного программирования (ЭЛП) при расчете матрицы корреспонденций. Для решения полученной задачи ЭЛП предлагается перейти к двойственной задаче и решать задачу относительно двойственных переменных. В работе описывается несколько численных методов оптимизации для решения данной задачи: алгоритм Синхорна и ускоренный алгоритм Синхорна. Далее приводятся численные эксперименты для следующих вариантов функций затрат: линейная функция затрат и сумма степенной и логарифмической функции затрат. В данных функциях затраты представляют из себя некоторую комбинацию среднего времени в пути и расстояния между районами, которая зависит от параметров. Для каждого набора параметров функции затрат рассчитывается матрица корреспонденций и далее оценивается качество восстановленной матрицы относительно известной матрицы корреспонденций. Мы предполагаем, что шум в восстановленной матрице корреспонденций является гауссовским, в результате в качестве метрики качества выступает среднеквадратичное отклонение. Данная задача представляет из себя задачу невыпуклой оптимизации. В статье приводится обзор безградиенных методов оптимизации для решения невыпуклых задач. Так как число параметров функции затрат небольшое, для определения оптимальных параметров функции затрат было выбрано использовать метод перебора по сетке значений. Таким образом, для каждого набора параметров рассчитывается матрица корреспонденций и далее оценивается качество восстановленной матрицы относительно известной матрицы корреспонденций. Далее по минимальному значению невязки для каждой функции затрат определяется, для какой функции затрат и при каких значениях параметров восстановленная матрица наилучшим образом описывает реальные корреспонденции.
-
Модификации алгоритма Frank–Wolfe в задаче поиска равновесного распределения транспортных потоков
Компьютерные исследования и моделирование, 2024, т. 16, № 1, с. 53-68В работе приведены различные модификации алгоритма Frank–Wolfe для задачи поиска равновесного распределения потоков. В качестве модели для экспериментов используется модель Бекмана. В этой статье в первую очередь уделяется внимание выбору направления базового шага алгоритма Frank–Wolfe (FW). Будут представлены алгоритмы: Conjugate Frank–Wolfe (CFW), Bi-conjugate Frank–Wolfe (BFW), Fukushima Frank–Wolfe (FFW). Каждой модификации соответствуют различные подходы к выбору этого направления. Некоторые из этих модификаций описаны в предыдущих работах авторов. В данной статье будут предложены алгоритмы N-conjugate Frank–Wolfe (NFW) и Weighted Fukushima Frank–Wolfe (WFFW). Эти алгоритмы являются некоторым идейным продолжением алгоритмов BFW и FFW. Таким образом, если первый алгоритм использовал на каждой итерации два последних направления предыдущих итераций для выбора следующего направления, сопряженного к ним, то предложенный алгоритм NFW использует $N$ предыдущих направлений. В случае же Fukushima Frank –Wolfe в качестве следующего направления берется среднее от нескольких предыдущих направлений. Соответственно этому алгоритму предложена модификация WFFW, использующая экспоненциальное сглаживание по предыдущим направлениям. Для сравнительного анализа были проведены эксперименты с различными модификациями на нескольких наборах данных, представляющих городские структуры и взятых из общедоступных источников. За метрику качества была взята величина относительного зазора. Результаты экспериментов показали преимущество алгоритмов, использующих предыдущие направления для выбора шага, перед классическим алгоритмом Frank–Wolfe. Кроме того, было выявлено улучшение эффективности при использовании более двух сопряженных направлений. Например, на многих датасетах модификация 3-conjugate FW сходилась наилучшим образом. Кроме того, предложенная модификация WFFW зачастую обгоняла FFW и CFW, хотя и проигрывала модификациям NFW.
-
Сравнение мобильных операционных систем на основе моделей роста надежности программного обеспечения
Компьютерные исследования и моделирование, 2018, т. 10, № 3, с. 325-334Оценка надежности программного обеспечения (ПО) — важная составляющая процесса разработки современного программного обеспечения. Многие исследования направлены на улучшение моделей для измерения и прогнозирования надежности программных продуктов. Однако мало внимания уделяется подходам к сопоставлению существующих систем с точки зрения надежности ПО. Несмотря на огромное значение для практики (и для управления разработкой ПО), полной и проверенной методологии сравнения не существует. В этой статье мы предлагаем методологию сравнения надежности программного обеспечения, в которой широко применяются модели роста надежности программного обеспечения. Методология была оценена на примере трех мобильных операционных систем с открытым исходным кодом: Sailfish, Tizen, CyanogenMod.
Побочным продуктом исследования является сравнение трех мобильных операционных систем с открытым исходным кодом. Целью данного исследования является определение того, какая ОС является более надежной. Для этого были определены 3 вопроса и 8 метрик. С учетом сравнения этих метрик оказалось, что Sailfish в большинстве случаев является самой эффективной операционной системой. Напротив, Tizen показывает лучшее в 3 случаях из 8, но оказывается хуже других систем только в одном случае из 8.
Ключевые слова: надежность ПО, мобильные операционные системы.Просмотров за год: 29. -
Многослойная нейронная сеть для определения размеров наночастиц в задаче лазерной спектрометрии
Компьютерные исследования и моделирование, 2019, т. 11, № 2, с. 265-273Просмотров за год: 16.Решение задачи лазерной спектрометрии позволяет определять размеры частиц в растворе по спектру интенсивности рассеянного света. В результате эксперимента методом динамического рассеяния света получается кривая интенсивности рассеяния, по которой необходимо определить, частицы каких размеров представлены в растворе. Экспериментально полученный спектр интенсивности сравнивается с теоретически ожидаемым спектром, который является кривой Лоренца. Основная задача сводится к тому, чтобы на основании этих данных найти относительные концентрации частиц каждого сорта, представленных в растворе. В статье представлен способ построения и использования нейронной сети, обученной на синтетических данных, для определения размера частиц в растворе в диапазоне 1–500 нм. Нейронная сеть имеет полносвязный слой из 60 нейронов с функцией активации RELU на выходе, слой из 45 нейронов и с аналогичной функцией активации, слой dropout и 2 слоя с количеством нейронов 15 и 1 (выход сети). В статье описано, как сеть обучалась и тестировалась на синтетических и экспериментальных данных. На синтетических данных метрика «среднеквадратичное отклонение» (rmse) дала значение 1.3157 нм. Экспериментальные данные были получены для размеров частиц 200 нм, 400 нм и раствора с представителями обоих размеров. Сравниваются результаты работы нейронной сети и классических линейных методов, основанных на применении различных регуляризаций за счет введения дополнительных параметров и применяемых для определения размера частиц. К недостаткам классических методов можно отнести трудность автоматического определения степени регуляризации: слишком сильная регуляризация приводит к тому, что кривые распределения частиц по размерам сильно сглаживаются, а слабая регуляризация дает осциллирующие кривые и низкую надежность результатов. В работе показано, что нейронная сеть дает хорошее предсказание для частиц с большим размером. Для малых размеров предсказание хуже, но ошибка быстро уменьшается с увеличением размера.
-
Двухпроходная модель Feature-Fused SSD для детекции разномасштабных изображений рабочих на строительной площадке
Компьютерные исследования и моделирование, 2023, т. 15, № 1, с. 57-73При распознавании рабочих на изображениях строительной площадки, получаемых с камер наблюдения, типичной является ситуация, при которой объекты детекции имеют сильно различающийся пространственный масштаб относительно друг друга и других объектов. Повышение точности детекции мелких объектов может быть обеспечено путем использования Feature-Fused модификации детектора SSD (Single Shot Detector). Вместе с применением на инференсе нарезки изображения с перекрытием такая модель хорошо справляется с детекцией мелких объектов. Однако при практическом использовании данного подхода требуется ручная настройка параметров нарезки. При этом снижается точность детекции объектов на сценах, отличающихся от сцен, использованных при обучении, а также крупных объектов. В данной работе предложен алгоритм автоматического выбора оптимальных параметров нарезки изображения в зависимости от соотношений характерных геометрических размеров объектов на изображении. Нами разработан двухпроходной вариант детектора Feature-Fused SSD для автоматического определения параметров нарезки изображения. На первом проходе применяется усеченная версия детектора, позволяющая определять характерные размеры объектов интереса. На втором проходе осуществляется финальная детекция объектов с параметрами нарезки, выбранными после первого прохода. Был собран датасет с изображениями рабочих на строительной площадке. Датасет включает крупные, мелкие и разноплановые изображения рабочих. Для сравнения результатов детекции для однопроходного алгоритма без разбиения входного изображения, однопроходного алгоритма с равномерным разбиением и двухпроходного алгоритма с подбором оптимального разбиения рассматривались тесты по детекции отдельно крупных объектов, очень мелких объектов, с высокой плотностью объектов как на переднем, так и на заднем плане, только на заднем плане. В диапазоне рассмотренных нами случаев наш подход превосходит подходы, взятые в сравнение, позволяет хорошо бороться с проблемой двойных детекций и демонстрирует качество 0,82–0,91 по метрике mAP (mean Average Precision).
-
Фреймворк sumo-atclib для моделирования адаптивного управления трафиком дорожной сети
Компьютерные исследования и моделирование, 2024, т. 16, № 1, с. 69-78В данной статье предлагается фреймворк sumo-atclib, который предоставляет удобный единообразный интерфейс для апробации разных по ограничениям алгоритмов адаптивного управления, например ограничения на длительности фаз, последовательности фаз, ограничения на минимальное время между управляющими воздействиями, который использует среду микроскопического моделирования транспорта с открытым исходным кодом SUMO. Фреймворк разделяет функционал контроллеров (класс TrafficController) и систему наблюдения и детектирования (класс StateObserver), что повторяет архитектуру реальных светофорных объектов и систем адаптивного управления и упрощает апробацию новыха лгоритмов, так как можно свободно варьировать сочетания разных контроллеров и систем детектирования транспортных средств. Также в отличие от большинства существующих решений добавлен класс дороги Road, который объединяет набор полос, это позволяет, например, определить смежность регулируемых перекрестков, в случаях когда на пути от одного перекрестка к другому количество полос меняется, а следовательно, граф дороги разбивается на несколько ребер. При это сами алгоритмы используют одинаковый интерфейс и абстрагированы от конкретных параметров детекторов, топологии сети, то есть предполагается, что это решение позволит транспортному инженеру протестировать уже готовые алгоритмы для нового сценария, без необходимости их адаптации под новые условия, что ускоряет процесс разработки управляющей системы и снижает накладные расходы на проектирование. В настоящий момент в пакете есть примеры алгоритмов MaxPressure и метода обучения с подкреплением Q-learning, база примеров также пополняется. Также фреймворк включает в себя набор сценариев SUMO для тестирования алгоритмов, в который входят как синтетические карты, так и хорошо верифицированные SUMO-сценарии, такие как Cologne и Ingolstadt. Кроме того, фреймворк предоставляет некоторый набор автоматически подсчитываемых метрик, таких как полное время в пути, время задержки, средняя скорость; также в фреймворке представлен готовый пример для визуализации метрик.
-
Транспортные данные для моделирования эффективной транспортной среды в Республике Татарстан
Компьютерные исследования и моделирование, 2021, т. 13, № 2, с. 395-404Автоматизированные системы мониторинга городского трафика широко используются для решения различных задач в интеллектуальных транспортных системах различных регионов. Такие системы включают комплексы фотовидеофиксации, видеонаблюдения, управления дорожным трафиком и т. д. Для эффективного управления транспортным потоком и своевременного реагирования на дорожные инциденты необходимы непрерывный сбор и анализ потока информации, поступающей с данных комплексов, формирование прогнозных значений для дальнейшего выявления аномалий. При этом для повышения качества прогноза требуется агрегирование данных, поступающих из различных источников. Это позволяет уменьшить ошибку прогноза, связанную с ошибками и пропусками в исходных данных. В данной статье реализован подход к краткосрочному и среднесрочному прогнозированию транспортных потоков (5, 10, 15 минут) на основе агрегирования данных, поступающих от комплексов фотовидеофиксации и систем видеонаблюдения. Реализован прогноз с использованием различных архитектур рекуррентных нейронных сетей: LSTM, GRU, двунаправленной LSTM с одним и двумя слоями. Работа двунаправленной LSTM исследовалась для 64 и 128 нейронов в каждом слое. Исследовалась ошибка прогноза для различных размеров входного окна (1, 4, 12, 24, 48). Для оценки прогнозной ошибки использована метрика RMSE. В ходе проведенных исследований получено, что наименьшая ошибка прогноза (0.032405) достигается при использовании однослойной рекуррентной нейронной сети LSTM с 64 нейронами и размером входного окна, равном 24.
Ключевые слова: транспортное моделирование, фотовидеофиксация, прогнозирование транспортного потока. -
Использование сверточных нейронных сетей для прогнозирования скоростей транспортного потока на дорожном графе
Компьютерные исследования и моделирование, 2018, т. 10, № 3, с. 359-367Просмотров за год: 36.Краткосрочное прогнозирование потока трафика является однойиз основных задач моделирования транспортных систем, основное назначение которой — контроль дорожного движения, сообщение об авариях, избежание дорожных пробок за счет знания потока трафика и последующего планирования транспортировки. Существует два типа подходов для решения этой задачи: математическое моделирование трафика и модель с использованием количественных данных трафика. Тем не менее большинство пространственно-временных моделейст радают от высокой математической сложности и низкой эффективности. Искусственные нейронные сети, один из видных подходов второго типа, показывают обещающие результаты в моделировании динамики транспортнойс ети. В данной работе представлена архитектура нейронной сети, используемойдля прогнозирования скоростейт ранспортного потока на графе дорожной сети. Модель основана на объединении рекуррентнойней ронной сети и сверточнойней ронной сети на графе, где рекуррентная нейронная сеть используется для моделирования временных зависимостей, а сверточная нейронная сеть — для извлечения пространственных свойств из трафика. Для получения предсказанийна несколько шагов вперед используется архитектура encoder-decoder, позволяющая уменьшить накопление шума из-за неточных предсказаний. Для моделирования сложных зависимостей мы используем модель, состоящую из нескольких слоев. Нейронные сети с глубокойархитек туройсло жны для тренировки; для ускорения процесса тренировки мы используем skip-соединения между каждым слоем, так что каждыйслой учит только остаточную функцию по отношению к предыдущему слою. Полученная объединенная нейронная сеть тренировалась на необработанных данных с сенсоров транспортного потока из сети шоссе в США с разрешением в 5 минут. 3 метрики — средняя абсолютная ошибка, средняя относительная ошибка, среднеквадратическая ошибка — использовались для оценки качества предсказания. Было установлено, что по всем метрикам предложенная модель имеет более низкую погрешность предсказания по сравнению с ранее опубликованными моделями, такими как Vector Auto Regression, Long Short-Term Memory и Graph Convolution GRU.
-
Оптимизация параметров и структуры параллельного сферического манипулятора
Компьютерные исследования и моделирование, 2023, т. 15, № 6, с. 1523-1534Статья представляет собой исследование математической модели и особенностей кинематики параллельного сферического манипулятора. Этот тип манипулятора был предложен еще в 80-х годах прошлого века и с тех пор нашел применение в экзоскелетах и реабилитационных роботах благодаря своей структуре, которая позволяет имитировать естественные движения суставов человеческого тела.
Параллельный сферический манипулятор имеет три параллельных двухзвенных рычажных механизма, которые соединяют две платформы — базовую и мобильную. Звенья механизма имеют дугообразную форму. Геометрически манипулятор можно описать с помощью двух виртуальных пирамид, которые расположены друг над другом.
В данной работе рассматриваются два основных типа конфигураций манипулятора (классическая и асимметричная) и решаются основные кинематические задачи для каждой из них. Исследование показывает, что асимметричное исполнение манипулятора имеет максимальное рабочее пространство, особенно когда моторы установлены в месте соединения опорных звеньев манипулятора.
Для оптимизации параметров параллельного сферического манипулятора вводится метрика полезного объема рабочего пространства. Данная метрика представляет собой объем сектора сферы, в котором робот не испытывает внутренних коллизий или сингулярных состояний. Внутри параллельного сферического манипулятора возможны три типа сингулярных состояний: последовательная, параллельная и смешанная сингулярность. Для расчета полезного объема были учтены все три типа сингулярностей. В ходе исследования решалась задача максимизации полезного объема рабочего пространства.
В результате исследования было обнаружено, что асимметричная конфигурация сферического манипулятора обеспечивает максимальное рабочее пространство, когда моторы расположены в месте соединения опорных звеньев механизмов робота. При этом для достижения максимального рабочего пространства параметр $\beta_1$ должен быть равен нулю градусов. Это позволило создать прототип робота, в котором вместо нижних опорных звеньев использована радиусная рельса, вдоль которой движутся моторы. Это позволило уменьшить линейные размеры самого робота и повысить жесткость конструкции.
Полученные результаты могут быть использованы для оптимизации параметров параллельного сферического манипулятора с целью применения его в различных промышленных и научных задачах, а также для дальнейшего исследования других типов параллельных роботов и манипуляторов.
Журнал индексируется в Scopus
Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"