Текущий выпуск Номер 3, 2025 Том 17

Все выпуски

Результаты поиска по 'метод решения':
Найдено статей: 411
  1. Свириденко А.Б.
    Оценка числа итераций для сильно полиномиальных алгоритмов линейного программирования
    Компьютерные исследования и моделирование, 2024, т. 16, № 2, с. 249-285

    Рассматривается прямой алгоритм решения задачи линейного программирования (ЛП), заданной в каноническом виде. Алгоритм состоит из двух последовательных этапов, на которых прямым методом решаются приведенные ниже задачи ЛП: невырожденная вспомогательная задача (на первом этапе) и некоторая задача, равносильная исходной (на втором). В основе построения вспомогательной задачи лежит мультипликативный вариант метода исключения Гаусса, в самой структуре которого заложены возможности: идентификации несовместности и линейной зависимости ограничений; идентификации переменных, оптимальные значения которых заведомо равны нулю; фактического исключения прямых переменных и сокращения размерности пространства, в котором определено решение исходной задачи. В процессе фактического исключения переменных алгоритм генерирует последовательность мультипликаторов, главные строки которых формируют матрицу ограничений вспомогательной задачи, причем возможность минимизация заполнения главных строк мультипликаторов заложена в самой структуре прямых методов. При этом отсутствует необходимость передачи информации (базис, план и оптимальное значение целевой функции) на второй этап алгоритма и применения одного из способов устранения зацикливания для гарантии конечной сходимости.

    Представлены два варианта алгоритма решения вспомогательной задачи в сопряженной канонической форме. Первый основан на ее решении прямым алгоритмом в терминах симплекс-метода, а второй — на решении задачи, двойственной к ней, симплекс-методом. Показано, что оба варианта алгоритма для одинаковых исходных данных (входов) генерируют одинаковую последовательность точек: базисное решение и текущее двойственное решение вектора оценок строк. Отсюда сделан вывод, что прямой алгоритм — это алгоритм типа симплекс-метода. Также показано, что сравнение вычислительных схем приводит к выводу, что прямой алгоритм позволяет уменьшить по кубическому закону число арифметических операций, необходимых для решения вспомогательной задачи, по сравнению с симплекс-методом. Приводится оценка числа итераций.

  2. Божко А.Н., Ливанцов В.Э.
    Оптимизация стратегии геометрического анализа в автоматизированных системах проектирования
    Компьютерные исследования и моделирование, 2024, т. 16, № 4, с. 825-840

    Автоматизация проектирования процессов сборки сложных изделий — это важная и сложная научно-техническая проблема. Последовательность сборки и содержание сборочных операций в значительной степени зависят от механической структуры и геометрических свойств изделия. Приведен обзор методов геометрического моделирования, которые применяются в современных системах автоматизированного проектирования. Моделирование геометрических препятствий при сборке методами анализа столкновений, планирования перемещений и виртуальной реальности требует очень больших вычислительных ресурсов. Комбинаторные методы дают только слабые необходимые условия геометрической разрешимости. Рассматривается важная задача минимизации числа геометрических проверок при синтезе сборочных операций и процессов. Формализация этой задачи основана на гиперграфовой модели механической структуры изделия. Эта модель дает корректное математическое описание когерентных и секвенциальных сборочных операций, которые доминируют в современном дискретном производстве. Введено ключевое понятие геометрической ситуации. Это такая конфигурация деталей при сборке, которая требует проверки на свободу от препятствий, и эта проверка дает интерпретируемые результаты. Предложено математическое описание геометрической наследственности при сборке сложных изделий. Аксиомы наследственности позволяют распространить результаты проверки одной геометрической ситуации на множество других ситуаций. Задача минимизации числа геометрических тестов поставлена как неантагонистическая игра ЛПР и природы, в которой требуется окрасить вершины упорядоченного множества в два цвета. Вершины представляют собой геометрические ситуации, а цвет — это метафора результата проверки на свободу от коллизий. Ход ЛПР заключается в выборе неокрашенной вершины, ответ природы — это цвет вершины, который определяется по результатам моделирования данной геометрической ситуации. В игре требуется окрасить упорядоченное множество за минимальное число ходов. Обсуждается проектная ситуация, в которой ЛПР принимает решение в условиях риска. Предложен способ подсчета вероятностей окраски вершин упорядоченного множества. Описаны основные чистые стратегии рационального поведения в данной игре. Разработан оригинальный синтетический критерий принятия рациональных решений в условиях риска. Предложены две эвристики, которые можно использовать для окрашивания упорядоченных множеств большой мощности и сложной структуры.

  3. Омарова А.Г., Бейбалаев В.Д.
    Численное решение третьей начально-краевой задачи для нестационарного уравнения теплопроводности с дробными производными
    Компьютерные исследования и моделирование, 2024, т. 16, № 6, с. 1345-1360

    В последнее время для описания различных математических моделей физических процессов широко используется дробно-дифференциальное исчисление. В связи с этим большое внимание уделяется уравнениям в частных производных дробного порядка, которые являются обобщением уравнений в частных производных целого порядка.

    Нагруженными дифференциальными уравнениями в литературе называют уравнения, содержащие значения решения или его производных на многообразиях меньшей размерности, чем размерность области определения искомой функции. В настоящее время широко используются численные методы для решения нагруженных уравнений в частных производных целого и дробного порядка, поскольку аналитические методы решения сложны в реализации. Достаточно эффективным методом численного решения такого рода задач является метод конечных разностей, или метод сеток.

    Исследована начально-краевая задача в прямоугольнике $\overline{D}=\{(x,\,t)\colon 0\leqslant x\leqslant l,\;0\leqslant t\leqslant T\}$ для нагруженного дифференциального уравнения теплопроводности с композицией дробной производной Римана – Лиувилля и Капуто – Герасимова и с граничными условиями первого и третьего рода. С помощью метода энергетических неравенств получена априорная оценка в дифференциальной и в разностной форме. Полученные неравенства означают единственность решения и непрерывную зависимость решения от входных данных задачи. Получен разностный аналог для композиции дробной производной Римана – Лиувилля и Капуто – Герасимова порядка $(2-\beta )$ и построена разностная схема, аппроксимирующая исходную задачу с порядком $O\left(\tau +h^{2-\beta } \right)$. Доказана сходимость решения разностной схемы к решению исходной дифференциальной задачи со скоростью, равной порядку аппроксимации разностной схемы.

  4. Степанов Р.П., Кусюмов С.А., Кусюмов А.Н., Романова Е.В.
    К вопросу об определении ядра концевого вихря
    Компьютерные исследования и моделирование, 2025, т. 17, № 1, с. 9-27

    Дается обзор критериев, используемых при идентификации концевых вихрей, сходящих с несущих поверхностей летательного аппарата. В качестве основного метода идентификации вихря используется $Q$-критерий, в соответствии с которым ядро вихря ограничено поверхностью, на которой норма тензора завихренности равна норме тензора сдвиговых деформаций. При этом внутри ядра вихря должны выполняться следующие условия: (i) ненулевое значение нормы тензора завихренности, (ii) геометрия ядра вихря должна удовлетворять условию галилеевой инвариантности. На основе аналитических моделей вихря дается определение понятия центра двумерного вихря как точки, в которой $Q$-распределение принимает максимальное значение и много больше нормы тензора сдвиговых деформаций (для осесимметричного 2D-вихря норма тензора сдвиговых деформаций в центре вихря стремится к нулю). Поскольку необходимость существования оси вихря обсуждается в работах различных авторов и выглядит достаточно естественным требованием при анализе концевых вихрей, упомянутые выше условия (i), (ii) дополнены условием (iii): ядро вихря в трехмерном потоке должно содержать ось вихря. Анализируются течения, имеющие в 2D-сечениях осевую симметрию, а также форму ядра вихря, отличающуюся от окружности (в частности, эллиптического вида). Показывается, что в этом случае с использованием $Q$-распределения можно не только определить область ядра вихря, но и выделить ось ядра вихря. Для иллюстрации введенных понятий используются результаты численного моделирования обтекания крыла конечного размаха на базе решения осредненных по Рейнольдсу стационарных уравнений Навье – Стокса (RANS). Замыкание уравнений Навье – Стокса осуществлялось с использованием модели турбулентности $k-\omega$.

  5. Последние годы получило широкое распространение применение нейросетевых моделей для решения задач аэродинамики. В основном такие модели, обученные по некоторому набору ранее полученных решений, позволяют предсказывать решения новых задач и являются в некотором смысле алгоритмами интерполяции. Альтернативным подходом может служить построение нейросетевого оператора, представляющего собой нейросетевую модель, которая воспроизводит поведение численного метода решения задачи. Такая модель позволяет находить решение задачи итерациями. В работе рассматривается вариант построения такого оператора с применением нейронной сети типа UNet с пространственным механизмом внимания для решения задач обтекания на прямоугольной равномерной сетке, общей для обтекаемого тела и поля течения. Для уточнения полученного решения предлагается и исследуется механизм коррекции решения. Анализируется вопрос устойчивости такого алгоритма решения стационарной задачи, проводится сравнение с некоторыми другими вариантами его построения: прием с продвижением вперед (pushforward trick), позиционное встраивание. Рассматривается вопрос выбора набора итераций для формирования обучающей выборки. Оценивается поведение решения при многократном применении нейросетевого оператора.

    Демонстрация метода приводится для случая обтекания скругленной пластины турбулентным потоком воздуха с различными вариантами скругления при фиксированных параметрах набегающего потока с числом Рейнольдса $\text{Re} = 10^5$ и числом Маха $M = 0,15$. Поскольку течения с такими параметрами набегающего потока можно считать несжимаемыми, исследуются непосредственно только компоненты скорости. При этом нейросетевая модель, используемая для построения оператора, имеет общий декодер для обеих компонент скорости. Проводится сравнение полей течения и профилей скорости по нормали и по обводу тела, полученных нейросетевым оператором и численно. Анализ проводится как на пластине, так и на скруглении. Результаты моделирования подтверждают, что нейросетевой оператор позволяет находить решение с высокой точностью устойчивым образом.

  6. Киселев М.В., Урусов А.М., Иваницкий А.Ю.
    Метод адаптивных гауссовых рецептивных полей для спайкового кодирования числовых переменных
    Компьютерные исследования и моделирование, 2025, т. 17, № 3, с. 389-400

    Одна из серьезных проблем, ограничивающих применение импульсных нейронных сетей в прикладных информационных системах, — это кодирование числовых данных в виде последовательностей спайков — бескачественных атомарных объектов, которыми обмениваются нейроны в импульсных нейросетях. Особенно остро эта проблема стоит в задачах обучения с подкреплением агентов, функционирующих в динамичном реальном мире, так как кроме точности кодирования надо учитывать еще его динамические характеристики. Одним из распространенных является метод кодирования гауссовыми рецептивными полями (ГРП). В этом методе одна числовая переменная, подаваемая на вход импульсной нейронной сети, представляется потоками спайков, испускаемых некоторым количеством входных узлов сети. При этом частота генерации спайков каждым входным узлом отражает близость текущего значения этой переменой к значению — центру рецептивного поля, соответствующего данному входному узлу. В стандартном методе ГРП центры рецептивных полей расположены эквидистантно. Это оказывается неэффективным в случае очень неравномерного распределения кодируемой величины. В настоящей работе предлагается усовершенствование этого метода, основанное на адаптивном выборе центров рецептивных полей и вычислении частот потоков спайков. Производится сравнение предлагаемого усовершенствованного метода ГРП с его стандартным вариантом с точки зрения объема сохраняемой при кодировании информации и с точки зрения точности классификационной модели, построенной на закодированных в виде спайков данных. Доля сохраняемой при спайковом кодировании информации для стандартного и адаптивного ГРП оценивается с помощью процедуры прямого и обратного кодирования большой выборки числовых значений из треугольного распределения вероятности и сравнения числа совпадающих бит в исходной и восстановленной выборке. Сравнение на основе точности классификации проводилось на задаче оценки текущего состояния, возникающей при реализации обучения с подкреплением. При этом классификационные модели строились тремя принципиально различными алгоритмами машинного обучения — алгоритмом ближайших соседей, случайным лесом решений и многослойным персептроном. В статье демонстрируется преимущество предложенного нами метода во всех проведенных тестах.

  7. Мокин А.Ю.
    Корректность семейства задач с неклассическим краевым условием
    Компьютерные исследования и моделирование, 2009, т. 1, № 2, с. 139-146

    Методом разделения переменных решена одномерная задача параболического типа с нелокальными краевыми условиями, содержащими вещественный параметр. Рассмотренные краевые условия не являются усиленно регулярными ни при каком значении параметра. Система собственных функций оператора второй производной, подчиненного краевым условиям исходной задачи, не обладает свойством базисности. Априорные оценки решения, полученные в работе, означают устойчивость решения по начальным данным.

    Просмотров за год: 2.
  8. Строганов А.В., Аристов В.В.
    Вероятностные аспекты метода «компьютерной аналогии» для решения дифференциальных уравнений
    Компьютерные исследования и моделирование, 2009, т. 1, № 1, с. 21-31

    Развивается и обосновывается метод, позволяющий получить явную форму решения в виде отрезков рядов по степеням шага аргумента. Формализуется алгоритм, элементы которого используют аналогию с представлением и обработкой чисел в компьютере: ограничение в разрядной сетке и переброс разрядов. При перебросе разряда выявляются фрактально-стохастические свойства алгоритма, дающие возможность осреднять неизвестные промежуточные шаги в старших разрядах. Строятся решения нелинейных дифференциальных уравнений и системы уравнений.

    Просмотров за год: 3. Цитирований: 1 (РИНЦ).
  9. Резаев Р.О., Трифонов А.Ю., Шаповалов А.В.
    Система Эйнштейна−Эренфеста типа (0, M) и асимптотические решения многомерного нелинейного уравнения Фоккера−Планка−Колмогорова
    Компьютерные исследования и моделирование, 2010, т. 2, № 2, с. 151-160

    Рассмотрен формализм квазиклассического приближения относительно малого коэффициента диффузии D, D→0, для многомерного уравнения Фоккера−Планка−Колмогорова с нелокальным и нелинейным вектором сноса в классе траекторно-сосредоточенных функций. Получена динамическая система Эйнштейна−Эренфеста типа (0, M), описывающая движение точки, в окрестности которой локализованы квазиклассические асимптотические решения. Построено семейство квазиклассических асимптотик с точностью O(D(M+1)/2).

    Просмотров за год: 2.
  10. Ракчеева Т.А.
    Критерии и сходимость фокусной аппроксимации
    Компьютерные исследования и моделирование, 2013, т. 5, № 3, с. 379-394

    Исследуются методы решения задачи фокусной аппроксимации — приближения по точечно заданной гладкой замкнутой эмпирической кривой многофокусными лемнискатами. Анализируются критерии и сходимость разработанных методов приближения, как в вещественной, так и в комплексной интерпретации. Доказывается топологическая эквивалентность используемых критериев.

    Просмотров за год: 2.
Страницы: « первая предыдущая следующая последняя »

Журнал индексируется в Scopus

Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"

Международная Междисциплинарная Конференция МАТЕМАТИКА. КОМПЬЮТЕР. ОБРАЗОВАНИЕ.