Текущий выпуск Номер 6, 2025 Том 17

Все выпуски

Результаты поиска по 'метод моментов':
Найдено статей: 93
  1. Шильков А.В., Герцев М.Н., Аристова Е.Н., Шилькова С.В.
    Методика эталонных «line-by-line» расчетов атмосферной радиации
    Компьютерные исследования и моделирование, 2012, т. 4, № 3, с. 553-562

    В работе описана методика «line-by-line» расчета тепловой радиации Земли и земной атмосферы. Расчет пространственно-углового распределения радиации производится численным интегрированием кинетического уравнения переноса излучения и уравнений для угловых моментов методом квазидиффузии. В качестве исходных данных для восстановления оптических параметров атмосферы используется банк линий молекулярного поглощения HITRAN [Rothman et al., 2009].

    Просмотров за год: 4. Цитирований: 3 (РИНЦ).
  2. Константинов Д.В., Бзовски К., Корчунов А.Г., Пьетчшек М.
    Моделирование процессов осесимметричного деформирования с учетом микроструктуры металла
    Компьютерные исследования и моделирование, 2015, т. 7, № 4, с. 897-908

    В статье описано современное состояние вопроса компьютерного моделирования процессов обработки металлов давлением, выделены основные проблемные моменты традиционных методов. Описан метод, позволяющий прогнозировать распределение деформации в объеме деформируемого металла с учетом поведенческих особенностей микроструктуры под воздействием деформационной нагрузки. Представлен способ оптимизации ресурсоемкости мультимасштабных моделей посредством использования статистически эквивалентного репрезентативного объема (SSRVE) микроструктуры. Разработанные методы моделирования апробированы на процессе однократного волочения прутка круглого сечения из стали марки 20. В ходе сравнительного анализа моделей макро- и микроуровней были выявлены различия в количественных показателях напряженно-деформированного состояния (НДС) и их локальном распределении по объему. Микроуровневая модель также позволила обнаружить отсутствующие на макроуровне сжимающие напряжения. Применение концепции SSRVE многократно снизило расчетное время модели при сохранении общей точности.

    Просмотров за год: 9. Цитирований: 1 (РИНЦ).
  3. Фаворская А.В., Голубев В.И.
    О применении формулы Рэлея на основе интегральных выражений Кирхгофа к задачам георазведки
    Компьютерные исследования и моделирование, 2017, т. 9, № 5, с. 761-771

    В данной работе рассматриваются формулы Рэлея, полученные из интегральных формул Кирхгофа, которые в дальнейшем могут быть применены для получения миграционных изображений. Актуальность проведенных в работе исследований обусловлена распространенностью применения миграции в интересах сейсмической разведки нефти и газа. Предлагаемый подход позволит существенно повысить качество сейсмической разведки в сложных случаях, таких как вечная мерзлота и шельфовые зоны южных и северных морей. Особенностью работы является использование упругого приближения для описания динамического поведения геологической среды, в отличие от широко распространенного акустического приближения. Сложность применения системы уравнений, описывающей состояние линейно-упругой среды, для получения формул Рэлея и алгоритмов на их основе возникает из-за значительного роста количества вычислений, математической и аналитической сложности итоговых алгоритмов по сравнению со случаем акустической среды. Поэтому в промышленной сейсморазведке в настоящий момент не используют алгоритмы миграции для случая упругих волн, что создает определенные трудности, так как акустическое приближение описывает только продольные сейсмические волны в геологических средах. В данной статье представлены итоговые аналитические выражения, которые можно использовать для разработки программных комплексов, используя описание упругих сейсмических волн (продольных и поперечных), тем самым охватывая весь диапазон сейсмических волн (продольных отраженных PP-волн, продольных отраженных SP-волн, поперечных отраженных PS-волн и поперечных отраженных SS-волн). Также в работе приведены результаты сравнения численных решений, полученных на основе формул Рэлея, с численными решениями, полученными сеточно-характеристическим методом. Ценность такого сравнения обусловлена тем, что метод на основе интегралов Рэлея основан на аналитических выражениях, в то время как сеточно-характеристический метод является методом численного интегрирования решения по расчетной сетке. В проведенном сравнении рассматривались различные типы источников: модель точечного источника, широко используемого в морской и наземной сейсморазведке, и модель плоской волны, которую также иногда применяют в полевых исследованиях.

    Просмотров за год: 11.
  4. В работе разработан кластерный метод математического моделирования интервально-стохастических тепловых процессов в сложных технических, в частности электронных, системах (ЭС). В кластерном методе конструкция сложной ЭС представляется в виде тепловой модели, являющейся системой кластеров, каждый из которых содержит ядро, объединяющее в себе тепловыделяющие элементы, попадающие в данный кластер, оболочку кластера и поток среды, протекающий через кластер. Состояние теплового процесса в каждом кластере и в каждый момент времени характеризуется тремя интервально-стохастическими переменными состояния, а именно температурами ядра, оболочки и потока среды. При этом элементы каждого кластера, а именно ядро, оболочка и поток среды, находятся в тепловом взаимодействии между собой и элементами соседних кластеров. В отличие от существующих методов кластерный метод позволяет моделировать тепловые процессы в сложных ЭС с учетом неравномерного распределения температуры в потоке среды нагнетаемой в ЭС, сопряженного характера теплообмена между пото- ком среды в ЭС, ядрами и оболочками кластеров и интервально-стохастического характера тепловых процессов в ЭС, вызванного статистическим технологическим разбросом изготовления и монтажа электронных элементов в ЭС, и случайными флуктуациями тепловых параметров окружающей среды. Математическая модель, описывающая состояния тепловых процессов в кластерной тепловой модели, представляет собой систему интервально-стохастических матрично-блочных уравнений с матричными и векторными блоками, соответствующими кластерам тепловой модели. Решением интервально-стохастических уравнений являются статистические меры переменных состояния тепловых процессов в кластерах — математические ожидания, ковариации между переменными состояния и дисперсии. Методика применения кластерного метода показана на примере реальной ЭС.

  5. Руденко В.Д., Юдин Н.Е., Васин А.А.
    Обзор выпуклой оптимизации марковских процессов принятия решений
    Компьютерные исследования и моделирование, 2023, т. 15, № 2, с. 329-353

    В данной статье проведен обзор как исторических достижений, так и современных результатов в области марковских процессов принятия решений (Markov Decision Process, MDP) и выпуклой оптимизации. Данный обзор является первой попыткой освещения на русском языке области обучения с подкреплением в контексте выпуклой оптимизации. Рассматриваются фундаментальное уравнение Беллмана и построенные на его основе критерии оптимальности политики — стратегии, принимающие решение по известному состоянию среды на данный момент. Также рассмотрены основные итеративные алгоритмы оптимизации политики, построенные на решении уравнений Беллмана. Важным разделом данной статьи стало рассмотрение альтернативы к подходу $Q$-обучения — метода прямой максимизации средней награды агента для избранной стратегии от взаимодействия со средой. Таким образом, решение данной задачи выпуклой оптимизации представимо в виде задачи линейного программирования. В работе демонстрируется, как аппарат выпуклой оптимизации применяется для решения задачи обучения с подкреплением (Reinforcement Learning, RL). В частности, показано, как понятие сильной двойственности позволяет естественно модифицировать постановку задачи RL, показывая эквивалентность между максимизацией награды агента и поиском его оптимальной стратегии. В работе также рассматривается вопрос сложности оптимизации MDP относительно количества троек «состояние–действие–награда», получаемых в результате взаимодействия со средой. Представлены оптимальные границы сложности решения MDP в случае эргодического процесса с бесконечным горизонтом, а также в случае нестационарного процесса с конечным горизонтом, который можно перезапускать несколько раз подряд или сразу запускать параллельно в нескольких потоках. Также в обзоре рассмотрены последние результаты по уменьшению зазора нижней и верхней оценки сложности оптимизации MDP с усредненным вознаграждением (Averaged MDP, AMDP). В заключение рассматриваются вещественнозначная параметризация политики агента и класс градиентных методов оптимизации через максимизацию $Q$-функции ценности. В частности, представлен специальный класс MDP с ограничениями на ценность политики (Constrained Markov Decision Process, CMDP), для которых предложен общий прямодвойственный подход к оптимизации, обладающий сильной двойственностью.

  6. Потапов И.И., Потапов Д.И.
    Модель установившегося течения реки в поперечном сечении изогнутого русла
    Компьютерные исследования и моделирование, 2024, т. 16, № 5, с. 1163-1178

    Моделирование русловых процессов при исследовании береговых деформаций русла требует вычисления параметров гидродинамического потока, учитывающих существование вторичных поперечных течений, формирующихся на закруглении русла. Трехмерное моделирование таких процессов на текущий момент возможно только для небольших модельных каналов, для реальных речных потоков необходимы модели пониженной размерности. При этом редукция задачи от трехмерной модели движения речного потока к двумерной модели потока в плоскости створа канала предполагает, что рассматриваемый гидродинамический поток является квазистационарным, и для него выполнены гипотезы об асимптотическом поведении потока по потоковой координате створа. С учетом данных ограничений в работе сформулирована математическая модель задачи о движении стационарного турбулентного спокойного речного потока в створе канала. Задача сформулирована в смешанной постановке скорости — «вихрь – функция тока». В качестве дополнительных условий для редукции задачи требуется задание граничных условий на свободной поверхности потока для поля скорости, определяемого в нормальном и касательном направлении к оси створа. Предполагается, что значения данных скоростей должны быть определены из решения вспомогательных задач или получены из данных натурных или экспериментальных измерений.

    Для решения сформулированной задачи используется метод конечных элементов в формулировке Петрова – Галёркина. Получен дискретный аналог задачи и предложен алгоритм ее решения. Выполненные численные исследования показали в целом хорошую согласованность полученных решений при их сравнении с известными экспериментальными данными.

    Полученные погрешности авторы связывают с необходимостью более точного определения циркуляционного поля скоростей в створе потока путем подбора и калибровки более подходящей модели вычисления турбулентной вязкости и граничных условий на свободной границе створа.

  7. Курушина С.Е., Федорова Е.А., Гуровская Ю.А.
    Методика анализа шумоиндуцированных явлений в двухкомпонентных стохастических системах реакционно-диффузионного типа со степенной нелинейностью
    Компьютерные исследования и моделирование, 2025, т. 17, № 2, с. 277-291

    В работе построена и исследуется обобщенная модель, описывающая двухкомпонентные системы реакционно-диффузионного типа со степенной нелинейностью и учитывающая влияние внешних шумов. Для анализа обобщенной модели разработана методология, включающая в себя линейный анализ устойчивости, нелинейный анализ устойчивости и численное моделирование эволюции системы. Методика проведения линейного анализа опирается на базовые подходы, в которых для получения характеристического уравнения используется матрица линеаризации. Нелинейный анализ устойчивости проводится с точностью до моментов третьего порядка включительно. Для этого функции, описывающие динамику компонент, раскладываются в ряд Тейлора до слагаемых третьего порядка. Затем с помощью теоремы Новикова проводится процедура усреднения. В результате полученные уравнения образуют бесконечную иерархично подчиненную структуру, которую в определенный момент необходимо прервать. Для этого пренебрегаем вкладом слагаемых выше третьего порядка как в самих уравнениях, так и при построении уравнений моментов. Полученные уравнения образуют набор линейных уравнений, из которых формируется матрица устойчивости. Эта матрица имеет довольно сложную структуру, в связи с чем ее решение может быть получено только численно. Для проведения численного исследования эволюции системы выбран метод переменных направлений. Из-за наличия в анализируемой системе стохастической части метод был модифицирован таким образом, что на целых слоях проводится генерация случайных полей с заданным распределением и функцией корреляции, отвечающих за шумовой вклад в общую нелинейность. Апробация разработанной методологии проведена на предложенной Barrio et al. модели реакции – диффузии, по результатам исследования которой им показана схожесть получаемых структур с пигментацией рыб. В настоящей работе внимание сосредоточено на анализе поведения системы в окрестности ненулевой стационарной точки. Изучена зависимость действительной части собственных значений от волнового числа. В линейном анализе получена область значений волновых чисел, при которых возникает неустойчивость Тьюринга. Нелинейный анализ и численное моделирование эволюции системы проводятся для параметров модели, которые, напротив, находятся вне области неустойчивости Тьюринга. В рамках нелинейного анализа найдены интенсивности аддитивного шума, при которых, несмотря на отсутствие условий для возникновения диффузионной неустойчивости, система переходит в неустойчивое состояние. Результаты численного моделирования эволюции апробируемой модели демонстрируют процесс образования пространственных структур тьюрингового типа при воздействии на нее аддитивного шума.

  8. Шумов В.В.
    Учет психологических факторов в моделях боя (конфликта)
    Компьютерные исследования и моделирование, 2016, т. 8, № 6, с. 951-964

    Ход и исход боя в значительной степени зависят от морального духа войск, характеризуемого процентом потерь (убитых и раненых), при котором войска еще продолжают сражаться. Всякий бой есть психологический акт, заканчивающийся отказом от него одной из сторон. Обычно в моделях боя психологический фактор учитывают в решении уравнений Ланчестера (условие равенства сил, когда численность одной из сторон обращается в ноль). При этом подчеркивается, что модели ланчестеровского типа удовлетворительно описывают динамику боя только на начальных его стадиях. Для разрешения данного противоречия предложено использовать модификацию уравнений Ланчестера, учитывающую тот факт, что в любой момент боя по противнику ведут огонь не пораженные и не отказавшиеся от сражения бойцы. Полученные дифференциальные уравнения решаются численным методом и позволяют в динамике учитывать влияние психологического фактора и оценивать время завершения конфликта. Вычислительные эксперименты подтверждают известный из военной теории факт, что бой обычно заканчивается отказом бойцов одной из сторон от его продолжения (уклонение от боя в различных формах). Наряду с моделями временно́й и пространственной динамики предложено ис- пользовать модификацию функции технологии конфликта С. Скапердаса, основанную на учете принципов боя. Для оценки вероятности победы одной из сторон в бою учитываются проценты выдерживаемых сторонами кровавых потерь и показатель боевого превосходства. Последний является средним геометрическим параметров, характеризующих всестороннее обеспечение боя, разведку, маневр и огонь. Анализ хода и исхода ряда военных компаний последних десятилетий показал, что процент выдерживаемых военных потерь резко снизился в странах с низким уровнем рождаемости. Наличие технологического превосходства над противником не гарантирует военного успеха, особенно в случае продолжительного конфликта. В этой связи представляются актуальными дальнейшие исследования, позволяющие количественно учесть вклад психологического фактора в ход и исход боя, а также учитывать влияние социально-психологических воздействий.

    Просмотров за год: 7. Цитирований: 4 (РИНЦ).
  9. Королева М.Р., Мищенкова О.В., Редер Т., Тененев В.А., Чернова А.А.
    Численное моделирование процесса срабатывания предохранительного клапана
    Компьютерные исследования и моделирование, 2018, т. 10, № 4, с. 495-509

    Рассматриваются вопросы построения математической модели процесса срабатывания пружинного предохранительного клапана прямого действия, в том числе и вопросыоб основания физически корректной величинына чального подъема диска при решении сопряженной задачи о движении диска в рабочем объеме клапана для газовых сред. Проводится обзор существующих подходов и методов решения данного типа задач. Приводятся постановка задачи о срабатывании клапана при повышении давления в резервуаре и математическая модель процесса срабатывания клапана. Особое внимание уделяется вопросам связывания физических подзадач. Описываются используемые методы, численные схемы и алгоритмы. Математическое моделирование проводится на основе фундаментальной системыдиф ференциальных уравнений движения вязкого сжимаемого газа, совместно с уравнением движения диска. В осесимметричной постановке решение рассматриваемой задачи строится численно с использованием метода конечных объемов. Сопоставляются результаты решения задачи о срабатывании предохранительного клапана, полученные с использованием вязкой модели и модели течения идеального газа. В невязкой постановке задача решается с использованием схемы Годунова, реализуемой в рамках авторского кода, а в вязкой постановке — на основе метода Курганова–Тадмора, реализуемого в рамках open source пакета OpenFOAM. Проводится сравнение результатов двух расчетов. В результате выполненных расчетов была получена зависимость высоты подъема диска от времени, которая сопоставляется с экспериментальными данными. Приводятся распределение давления газа по поверхности диска, а также профили скорости в поперечных сечениях зазора для различных высот подъема диска. Показывается, что величина начального подъема диска не влияет на характер течения газа и динамику подвижной части клапана, что может существенно сократить время расчета полного цикла работы клапана с момента его открытия до закрытия при понижении давления ниже установленного уровня. Для проверки адекватности и корректности используемых численных схем проводится моделирование процесса срабатывания клапана в рамках метода Годунова для невязкого газа. Полученные данные хорошо коррелируются между собой, что свидетельствует как о корректности сформулированной математической модели процесса срабатывания клапана, так и о возможности применения для описания динамики предохранительных клапанов модели невязкого газа.

    Просмотров за год: 34. Цитирований: 1 (РИНЦ).
  10. Русяк И.Г., Тененев В.А.
    К вопросу о численном моделировании внутренней баллистики для трубчатого заряда в пространственной постановке
    Компьютерные исследования и моделирование, 2021, т. 13, № 5, с. 993-1010

    Для трубчатых пороховых элементов большого удлинения, используемых в артиллерийских метательных зарядах, имеют место условия неравномерного горения. Здесь необходимо параллельно рассматривать процессы горения и движения пороховых газов внутри и вне каналов пороховых трубок. Без этого невозможно адекватно поставить и решить задачи о воспламенении, эрозионном горении и напряженно-деформированном состоянии трубчатых пороховых элементов в процессе выстрела. В работе представлена физико-математическая постановка основной задачи внутренней баллистики артиллерийского выстрела для заряда, состоящего из совокупности пороховых трубок. Горение и движение пучка пороховых трубок по каналу ствола моделируются эквивалентным трубчатым зарядом всестороннего горения. Площади торца и сечения канала такого заряда (эквивалентной трубки) равны сумме площадей торцов и сечений каналов пороховых трубок соответственно. Поверхность горения канала равна сумме внутренних поверхностей трубок в пучке. Внешняя поверхность горения эквивалентной трубки равна сумме внешних поверхностей трубок в пучке. Предполагается, что эквивалентная трубка движется по оси канала ствола. Скорость движения эквивалентного трубчатого заряда и его текущее положение определяются из второго закона Ньютона. Для расчета параметров течения использованы двумерные осесимметричные уравнения газовой динамики, для решения которых строится осесимметричная ортогонализированная разностная сетка, адаптирующаяся к условиям течения. При перемещении и горении трубки разностная сетка перестраивается с учетом изменяющихся областей интегрирования. Для численного решения системы газодинамических уравнений применяется метод контрольного объема. Параметры газа на границах контрольных объемов определяются с использованием автомодельного решения задачи о распаде произвольного разрыва С.К. Годунова. Разработанная методика использована при расчетах внутрибаллистических параметров артиллерийского выстрела. Данный подход рассмотрен впервые и позволяет по-новому подойти к проектированию трубчатых артиллерийских зарядов, поскольку позволяет получить необходимую информацию в виде полей скорости и давления пороховых газов для расчета процесса постепенного воспламенения, нестационарного эрозионного горения, напряженно-деформированного состояния и прочности пороховых элементов при выстреле. Представлены временные зависимости параметров внутрибаллистического процесса и распределения основных параметров течения продуктов горения в различные моменты времени.

Страницы: « первая предыдущая следующая последняя »

Журнал индексируется в Scopus

Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"

Международная Междисциплинарная Конференция МАТЕМАТИКА. КОМПЬЮТЕР. ОБРАЗОВАНИЕ.