Все выпуски
- 2025 Том 17
- 2024 Том 16
- 2023 Том 15
- 2022 Том 14
- 2021 Том 13
- 2020 Том 12
- 2019 Том 11
- 2018 Том 10
- 2017 Том 9
- 2016 Том 8
- 2015 Том 7
- 2014 Том 6
- 2013 Том 5
- 2012 Том 4
- 2011 Том 3
- 2010 Том 2
- 2009 Том 1
-
Извлечение персонажей и событий из повествований
Компьютерные исследования и моделирование, 2024, т. 16, № 7, с. 1593-1600Извлечение событий и персонажей из повествований является фундаментальной задачей при анализе и обработке текста на естественном языке. Методы извлечения событий применяются в самых разных областях — от обобщения различных документов до анализа медицинских записей. Мы определяли события на основе структуры под названием «четыре W» (кто, что, когда, где), чтобы охватить все основные компоненты событий, такие как действующие лица, действия, время и места. В этой статье мы рассмотрели два основных метода извлечения событий: статистический анализ синтаксических деревьев и семантическая маркировка ролей. Хотя эти методы были изучены разными исследователями по отдельности, мы напрямую сравнили эффективность двух подходов на собранном нами наборе данных, который мы разметили.
Наш анализ показал, что статистический анализ синтаксических деревьев превосходит семантическую маркировку ролей при выделении событий и символов, особенно при определении конкретных деталей. Тем не менее, семантическая маркировка ролей продемонстрировала хорошую эффективность при правильной идентификации действующих лиц. Мы оценили эффективность обоих подходов, сравнив различные показатели, такие как точность, отзывчивость и F1-баллы, продемонстрировав, таким образом, их соответствующие преимущества и ограничения.
Более того, в рамках нашей работы мы предложили различные варианты применения методов извлечения событий, которые мы планируем изучить в дальнейшем. Области, в которых мы хотим применить эти методы, включают анализ кода и установление авторства исходного кода. Мы рассматриваем возможность использования методов извлечения событий для определения ключевых элементов кода в виде назначений переменных и вызовов функций, что в дальнейшем может помочь ученым проанализировать поведение программ и определить участников проекта. Наша работа дает новое понимание эффективности статистического анализа и методов семантической маркировки ролей, предлагая исследователям новые направления для применения этих методов.
-
Оценка анизотропии сейсмического отклика от трещиноватых геологических объектов
Компьютерные исследования и моделирование, 2018, т. 10, № 2, с. 231-240Просмотров за год: 11. Цитирований: 4 (РИНЦ).Сейсмическая разведка является наиболее распространённым методом поиска и разведки месторождений полезных ископаемых: нефти и природного газа. Зародившись в начале XX века, она получила значительное развитие и в настоящий момент используется практически всеми сервисными нефтяными компаниями. Основными ее преимуществами являются приемлемая стоимость проведения полевых работ (по сравнению с бурением скважин) и точность восстановления характеристик подповерхностного пространства. Однако с открытием нетрадиционных месторождений (например, Арктический шельф, Баженовская свита) актуальной стала задача усовершенствования существующих и создания новых технологий обработки сейсмических данных. Значительное развитие в данном направлении возможно с использованием численного моделирования распространения сейсмических волн в реалистичных моделях геологического массива, поскольку реализуется возможность задания произвольной внутренней структуры среды с последующей оценкой синтетического сигнала-отклика.
Настоящая работа посвящена исследованию пространственных динамических процессов, протекающих в геологических средах, содержащих трещиноватые включения, в процессе сейсмической разведки. Авторами построена трехмерная модель слоистого массива, содержащего пласт из флюидонасыщенных трещин, позволяющая оценить сигнал-отклик при варьировании структуры неоднородного включения. Для описания физических процессов используется система уравнений линейно-упругого тела в частных производных второго порядка, которая решается численно сеточно-характеристическим методом на гексаэдральных расчетных сетках. При этом плоскости трещин выделяются на этапе построения расчетной сетки, в дальнейшем используется дополнительная корректировка, обеспечивающая корректный сейсмический отклик для параметров модели, характерных для геологических сред.
В работе получены площадные трехкомпонентные сейсмограммы с общим пунктом взрыва. На их основе проведена оценка влияния структуры трещиноватой среды на анизотропию сейсмического отклика, регистрируемого на дневной поверхности на различном удалении от источника. Установлено, что кинематические характеристики сигнала остаются постоянными, тогда как динамические характеристики для упорядоченных и неупорядоченных моделей могут различаться на десятки процентов.
-
Модель распределенных вычислений для организации программной среды, обеспечивающей управление автоматизированными системами интеллектуальных зданий
Компьютерные исследования и моделирование, 2021, т. 13, № 3, с. 557-570Настоящая статья описывает разработанную авторами модель построения распределенной вычислительной сети и осуществления в ней распределенных вычислений, которые выполняются в рамках программно-информационной среды, обеспечивающей управление информационными, автоматизированными и инженерными системами интеллектуальных зданий. Представленная модель основана на функциональном подходе с инкапсуляцией недетерминированных вычислений и различных побочных эффектов в монадические вычисления, что позволяет применять все достоинства функционального программирования для выбора и исполнения сценариев управления различными аспектами жизнедеятельности зданий и сооружений. Кроме того, описываемая модель может использоваться совместно с процессом интеллектуализации технических и социотехнических систем для повышения уровня автономности принятия решений по управлению значениями параметров внутренней среды здания, а также для реализации методов адаптивного управления, в частности применения различных техник и подходов искусственного интеллекта. Важной частью модели является направленный ациклический граф, который представляет собой расширение блокчейна с возможностью существенным образом снизить стоимость транзакций с учетом выполнения смарт-контрактов. По мнению авторов, это позволит реализовать новые технологии и методы (распределенный реестр на базе направленного ациклического графа, вычисления на краю и гибридную схему построения искусственных интеллектуальных систем) и все это вместе использовать для повышения эффективности управления интеллектуальными зданиями. Актуальность представленной модели основана на необходимости и важности перевода процессов управления жизненным циклом зданий и сооружений в парадигму Индустрии 4.0 и применения для управления методов искусственного интеллекта с повсеместным внедрением автономных искусственных когнитивных агентов. Новизна модели вытекает из совокупного рассмотрения распределенных вычислений в рамках функционального подхода и гибридной парадигмы построения искусственных интеллектуальных агентов для управления интеллектуальными зданиями. Работа носит теоретический характер. Статья будет интересна ученым и инженерам, работающим в области автоматизации технологических и производственных процессов как в рамках интеллектуальных зданий, так и в части управления сложными техническими и социотехническими системами в целом.
-
Задачи и алгоритмы оптимальной кластеризации многомерных объектов по множеству разнородных показателей и их приложения в медицине
Компьютерные исследования и моделирование, 2024, т. 16, № 3, с. 673-693Работа посвящена описанию авторских формальных постановок задачи кластеризации при заданном числе кластеров, алгоритмам их решения, а также результатам применения этого инструментария в медицине.
Решение сформулированных задач точными алгоритмами реализаций даже относительно невысоких размерностей до выполнения условий оптимальности невозможно за сколько-нибудь рациональное время по причине их принадлежности к классу NP.
В связи с этим нами предложен гибридный алгоритм, сочетающий преимущества точных методов на базе кластеризации в парных расстояниях на начальном этапе с быстродействием методов решения упрощенных задач разбиения по центрам кластеров на завершающем этапе. Для развития данного направления разработан последовательный гибридный алгоритм кластеризации с использованием случайного поиска в парадигме роевого интеллекта. В статье приведено его описание и представлены результаты расчетов прикладных задач кластеризации.
Для выяснения эффективности разработанного инструментария оптимальной кластеризации многомерных объектов по множеству разнородных показателей был выполнен ряд вычислительных экспериментов с использованием массивов данных, включающих социально-демографические, клинико-анамнестические, электроэнцефалографические и психометрические данные когнитивного статуса пациентов кардиологической клиники. Получено эксперимен- тальное доказательство эффективности применения алгоритмов локального поиска в парадигме роевого интеллекта в рамках гибридного алгоритма при решении задач оптимальной кластеризации. Результаты вычислений свидетельствуют о фактическом разрешении основной проблемы применения аппарата дискретной оптимизации — ограничения доступных размерностей реализаций задач. Нами показано, что эта проблема снимается при сохранении приемлемой близости результатов кластеризации к оптимальным.
Прикладное значение полученных результатов кластеризации обусловлено также тем, что разработанный инструментарий оптимальной кластеризации дополнен оценкой стабильности сформированных кластеров, что позволяет к известным факторам (наличие стеноза или старший возраст) дополнительно выделить тех пациентов, когнитивные ресурсы которых оказываются недостаточны, чтобы преодолеть влияние операционной анестезии, вследствие чего отмечается однонаправленный эффект послеоперационного ухудшения показателей сложной зрительно-моторной реакции, внимания и памяти. Этот эффект свидетельствует о возможности дифференцированно классифицировать пациентов с использованием предлагаемого инструментария.
Ключевые слова: оптимальная кластеризация, парные расстояния, центры кластеров, гибридный алгоритм, локальный поиск, роевой интеллект. -
Обзор алгоритмических решений для развертывания нейронных сетей на легких устройствах
Компьютерные исследования и моделирование, 2024, т. 16, № 7, с. 1601-1619В современном мире, ориентированном на технологии, легкие устройства, такие как устройства Интернета вещей (IoT) и микроконтроллеры (MCU), становятся все более распространенными. Эти устройства более энергоэффективны и доступны по цене, но часто обладают урезанными возможностями, по сравнению со стандартными версиями, такими как ограниченная память и вычислительная мощность. Современные модели машинного обучения могут содержать миллионы параметров, что приводит к значительному росту требований по объему памяти. Эта сложность не только затрудняет развертывание больших моделей на устройствах с ограниченными ресурсами, но и увеличивает риск задержек и неэффективности при обработке данных, что критично в случаях, когда требуются ответы в реальном времени, таких как автономное вождение или медицинская диагностика.
В последние годы нейронные сети достигли значительного прогресса в методах оптимизации моделей, что помогает в развертывании и инференсе на этих небольших устройствах. Данный обзор представляет собой подробное исследование прогресса и последних достижений в оптимизации нейронных сетей, сосредотачиваясь на ключевых областях, таких как квантизация, прореживание, дистилляция знаний и поиск архитектур нейронных сетей. Обзор рассматривает, как эти алгоритмические решения развивались и как новые подходы улучшили существующие методы, делая нейронные сети более эффективными. Статья предназначена для исследователей, практиков и инженеров в области машинного обучения, которые могут быть незнакомы с этими методами, но хотят изучить доступные техники. В работе подчеркиваются текущие исследования в области оптимизации нейронных сетей для достижения лучшей производительности, снижения потребления энергии и ускорения времени обучения, что играет важную роль в дальнейшей масштабируемости нейронных сетей. Кроме того, в обзоре определяются пробелы в текущих исследованиях и закладывается основа для будущих исследований, направленных на повышение применимости и эффективности существующих стратегий оптимизации.
Ключевые слова: квантизация, поиск архитектуры нейронной сети, дистилляция знаний, обрезка, обучение с подкреплением, сжатие модели. -
Применение больших языковых моделей для интеллектуального поиска и извлечения информации в корпоративных информационных системах
Компьютерные исследования и моделирование, 2025, т. 17, № 5, с. 871-888В данной статье исследуется эффективность применения технологии Retrieval-Augmented Generation (RAG) в сочетании с различными большими языковыми моделями (LLM) для поиска документов и получения информации в корпоративных информационных системах. Рассматриваются варианты использования LLM в корпоративных системах, архитектура RAG, характерные проблемы интеграции LLM в RAG-систему. Предлагается архитектура системы, включающая в себя векторный энкодер текстов и LLM. Энкодер используется для создания векторной базы данных, индексирующей библиотеку корпоративных документов. Запрос, передаваемый LLM, дополняется релевантным ему контекстом из библиотеки корпоративных документов, извлекаемым с использованием векторной базы данных и библиотеки FAISS. Большая языковая модель принимает запрос пользователя и формирует ответ на основе переданных в контексте запроса данных. Рассматриваются общая структура и алгоритм функционирования предлагаемого решения, реализующего архитектуру RAG. Обосновывается выбор LLM для исследования и проводится анализ результативности использования популярных LLM (ChatGPT, GigaChat, YandexGPT, Llama, Mistral, Qwen и др.) в качестве компонента для генерации ответов. На основе тестового набора вопросов методом экспертных оценок оцениваются точность, полнота, грамотность и лаконичность ответов, предоставляемых рассматриваемыми моделями. Анализируются характеристики отдельных моделей, полученные в результате исследования. Приводится информация о средней скорости отклика моделей. Отмечается существенное влияние объема доступной памяти графического адаптера на производительность локальных LLM. На основе интегрального показателя качества формируется общий рейтинг LLM. Полученные результаты подтверждают эффективность предложенной архитектуры RAG для поиска документов и получения информации в корпоративных информационных системах. Были определены возможные направления дальнейших исследований в этой области: дополнение контекста, передаваемого LLM, и переход к архитектуре на базе LLM-агентов. В заключении представлены рекомендации по выбору оптимальной конфигурации RAG и LLM для построения решений, обеспечивающих быстрый и точный доступ к информации в рамках корпоративных информационных систем.
-
Численные исследования структуры возмущенных областей, образованных мощными взрывами на различных высотах. Обзор
Компьютерные исследования и моделирование, 2020, т. 12, № 1, с. 97-140В основу обзора положены некоторые ранние работы авторов, представляющие определенный научный, методический и практический интерес; наибольшее внимание уделено работам последних лет, где выполнены достаточно подробные численные исследования не только одиночных, но также двойных и множественных взрывов в широком диапазоне высот и условий в окружающей среде. Так как в нижней атмосфере ударная волна мощного взрыва является одним из главных поражающих факторов, то в обзоре большое внимание уделено физическому анализу их распространения и взаимодействия. С помощью разработанных авторами трехмерных алгоритмов рассмотрены интересные с физической точки зрения эффекты интерференции и дифракции нескольких ударных волн в отсутствие и при наличии подстилающей поверхности различной структуры. Определены количественные характеристики в области их максимальных значений, что представляет известный практический интерес. Для взрывов в плотной атмосфере найдены некоторые новые аналитические решения на основе метода малых возмущений, удобные для приближенных расчетов. Для ряда условий показана возможность использования автомодельных свойств уравнений первого и второго рода для решения задач о развитии взрыва.
На основе численного анализа показано принципиальное изменение в структуре развития возмущенной области при изменении высоты взрыва в диапазоне 100–120 км. На высотах более 120 км геомагнитное поле начинает влиять на развитие взрыва, поэтому даже для одиночного взрыва картина плазменного течения через несколько секунд становится существенно трехмерной. Для расчета взрывов на высотах 120–1000 км под руководством академика Холодова А. С. был разработан специальный трехмерный численный алгоритм на основе МГД-приближения. Были выполнены многочисленные расчеты и впервые получена достаточно подробная картина трехмерного течения плазмы взрыва с образованием через 5–10 с восходящей струи, направленной в меридиональной плоскости примерно по геомагнитному полю. После некоторой модификации данный алгоритм использовался для расчета двойных взрывов в ионосфере, разнесенных на некоторое расстояние. Взаимодействие между ними осуществлялось как плазменными потоками, так и через геомагнитное поле. Некоторые результаты приведены в данном обзоре и подробно изложены в оригинальных статьях.
Ключевые слова: численное моделирование, взрывы в атмосфере, одиночные и множественные взрывы, ударные волны. -
Облачная интерпретация энтропийной модели расчета матрицы корреспонденций
Компьютерные исследования и моделирование, 2024, т. 16, № 1, с. 89-103С ростом населения городов сильнее ощущается необходимость планирования развития транспортной инфраструктуры. Для этой цели создаются пакеты транспортного моделирования, которые обычно содержат набор задач выпуклой оптимизации, итеративное решение которых приводит к искомому равновесному распределению потоков по путям. Одно из направлений развития транспортного моделирования — это построение более точных обобщенных моделей, которые учитывают различные типы пассажиров, их цели поездок, а также специфику личных и общественных средств передвижения, которыми могут воспользоваться агенты. Другим не менее важным направлением является улучшение эффективности производимых вычислений, так как в связи с большой размерностью современных транспортных сетей поиск численного решения задачи равновесного распределения потоков по путям является довольно затратным. Итеративность всего процесса решения лишь усугубляет это. Одним из подходов, ведущим к уменьшению числа производимых вычислений, и является построение согласованных моделей, которые позволяют объединить блоки 4-стадийной модели в единую задачу оптимизации. Это позволяет исключить итеративную прогонку блоков, перейдя от решения отдельной задачи оптимизации на каждом этапе к некоторой общей задаче. В ранних работах было доказано, что такие подходы дают эквивалентные решения. Тем не менее стоит рассмотреть обоснованность и интерпретируемость этих методов. Целью данной статьи является обоснование единой задачи, объединяющей в себе как расчет матрицы корреспонденций, так и модальный выбор, для обобщенного случая, когда в транспортной сети присутствуют различные слои спроса, типы агентов и классы транспортных средств. В статье приводятся возможные интерпретации для калибровочных параметров, применяемых в задаче, а также для двойственных множителей, ассоциированных с балансовыми ограничениями. Авторы статьи также показывают возможность объединения рассматриваемой задачи с блоком определения загрузки сети в единую задачу оптимизации.
Ключевые слова: мультиномиальный логит, модель дискретного выбора, модальный выбор, энтропийная модель. -
Модель установившегося течения реки в поперечном сечении изогнутого русла
Компьютерные исследования и моделирование, 2024, т. 16, № 5, с. 1163-1178Моделирование русловых процессов при исследовании береговых деформаций русла требует вычисления параметров гидродинамического потока, учитывающих существование вторичных поперечных течений, формирующихся на закруглении русла. Трехмерное моделирование таких процессов на текущий момент возможно только для небольших модельных каналов, для реальных речных потоков необходимы модели пониженной размерности. При этом редукция задачи от трехмерной модели движения речного потока к двумерной модели потока в плоскости створа канала предполагает, что рассматриваемый гидродинамический поток является квазистационарным, и для него выполнены гипотезы об асимптотическом поведении потока по потоковой координате створа. С учетом данных ограничений в работе сформулирована математическая модель задачи о движении стационарного турбулентного спокойного речного потока в створе канала. Задача сформулирована в смешанной постановке скорости — «вихрь – функция тока». В качестве дополнительных условий для редукции задачи требуется задание граничных условий на свободной поверхности потока для поля скорости, определяемого в нормальном и касательном направлении к оси створа. Предполагается, что значения данных скоростей должны быть определены из решения вспомогательных задач или получены из данных натурных или экспериментальных измерений.
Для решения сформулированной задачи используется метод конечных элементов в формулировке Петрова – Галёркина. Получен дискретный аналог задачи и предложен алгоритм ее решения. Выполненные численные исследования показали в целом хорошую согласованность полученных решений при их сравнении с известными экспериментальными данными.
Полученные погрешности авторы связывают с необходимостью более точного определения циркуляционного поля скоростей в створе потока путем подбора и калибровки более подходящей модели вычисления турбулентной вязкости и граничных условий на свободной границе створа.
-
Методы прогнозирования и модели распространения заболеваний
Компьютерные исследования и моделирование, 2013, т. 5, № 5, с. 863-882Просмотров за год: 71. Цитирований: 19 (РИНЦ).Число работ, посвященных прогнозированию инфекционной заболеваемости, стремительно растет по мере появления статистики, позволяющей провести анализ. В настоящей статье представлен обзор основных решений, доступных сегодня для формирования как краткосрочных, так и долгосрочных проекций заболеваемости; указаны их ограничения и возможности практического применения. Рассмотрены традиционные методы анализа временных рядов — регрессионные и авторегрессионные модели; подходы, опирающиеся на машинное обучение — байесовские сети и искусственные нейронные сети; рассуждения на основе прецедентов; техники, базирующиеся на решении задачи фильтрации. Перечислены важнейшие направления разработки математических моделей распространения заболевания: классические аналитические модели, детерминированные и стохастические, а также современные имитационные модели, сетевые и агентные.
Журнал индексируется в Scopus
Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"





