Текущий выпуск Номер 4, 2025 Том 17

Все выпуски

Результаты поиска по 'автономность':
Найдено статей: 24
  1. Яковенко Г.Н.
    Причины нелинейности: глобальность и некоммутативность
    Компьютерные исследования и моделирование, 2009, т. 1, № 4, с. 355-358

    Динамический процесс моделируется обыкновенными дифференциальными уравнениями. Если у неавтономной системы обыкновенных дифференциальных уравнений в некоторой области существует общее решение, то неавтономной заменой переменных система максимально упрощается: правые части - нули. У автономной системы обыкновенных дифференциальных уравнений в окрестности неособой точки правая часть выпрямляется. Рассмотрен случай сепарабельной системы: в правой части линейная комбинация автономных векторных полей, коэффициенты - функции независимой переменной. Если поля коммутируют, то они общей заменой переменных выпрямляются.

    Просмотров за год: 3.
  2. Чуйко С.М., Старкова О.В., Чуйко А.С.
    Автономная нетерова краевая задача в частном критическом случае
    Компьютерные исследования и моделирование, 2011, т. 3, № 4, с. 337-351

    Найдены необходимые и достаточные условия существования решений нелинейной автономной краевой задачи в частном критическом случае. Характерной особенностью поставленной задачи является невозможность непосредственного применения традиционной схемы исследования и построения решений критических краевых задач, созданной в работах И.Г. Малкина, А.М. Самойленко, Е.А. Гребеникова, Ю.А. Рябова и А.А. Бойчука. Для построения решений нелинейной нетеровой краевой задачи в частном критическом случае предложена итерационная схема, построенная по схеме метода наименьших квадратов. Эффективность техники продемонстрирована на примере анализа периодической задачи для уравнения типа Хилла.

    Просмотров за год: 4. Цитирований: 1 (РИНЦ).
  3. От редакции
    Компьютерные исследования и моделирование, 2018, т. 10, № 3, с. 279-283
    Просмотров за год: 18.
  4. От редакции
    Компьютерные исследования и моделирование, 2018, т. 10, № 6, с. 733-735
    Просмотров за год: 20.
  5. От редакции
    Компьютерные исследования и моделирование, 2021, т. 13, № 3, с. 455-457
  6. От редакции
    Компьютерные исследования и моделирование, 2023, т. 15, № 1, с. 5-6
  7. От редакции
    Компьютерные исследования и моделирование, 2025, т. 17, № 4, с. 525-528
  8. Белкина Е.А., Жестов Е.А., Шестаков А.В.
    Методы решения парадокса Браесса на транспортной сети с автономным транспортом
    Компьютерные исследования и моделирование, 2021, т. 13, № 2, с. 281-294

    Дороги — ресурс, который может использоваться как водителями, так и автономными транспортными средствами. Ежегодно количество транспортных средств увеличивается, из-за чего каждое отдельно взятое транспортное средство тратит всё больше времени в пробках, тем самым увеличивая суммарные временные затраты. При планировании новой дороги ключевой задачей становится сокращение времени в пути. Оптимизация транспортных сетей в настоящее время часто происходит с помощью добавления новых связующих дорог между высоконагруженными частями трасс. Парадокс Браесса заключается в том, что построение нового ребра дорожной сети приводит к увеличению времени в пути для каждого транспортного средства в сети. Целью данной статьи является предложение различных разрешений парадокса Браесса при рассмотрении автономных транспортных средств в качестве участников дорожного движения. Один из вариантов топологического решения транспортной задачи — использование искусственных ограничителей трафика. Как пример таких ограничителей статья рассматривает введение выделенных полос, доступных только для определенных видов транспорта. Выделенные полосы занимают особое место в транспортной сети и могут обслуживать поток по-разному. В данной статье рассмотрены наиболее часто встречающиеся случаи распределения трафика на сети из двух дорог, приведены аналитический и численный методы оптимизации модели и представлена модель оптимального распределения трафика, которая рассматривает различные варианты выделения полос на изолированной транспортной сети. В результате проведенных исследований было обнаружено, что введение выделенных полос решает парадокс Браесса и приводит к уменьшению общего времени в пути. Решения приведены как для искусственно смоделированной сети, так и на реальных примерах. В статье представлен алгоритм моделирования трафика на браессовской сети и приведено обоснование его корректности на реальном примере.

  9. Ширков П.Д., Зубанов А.М.
    Двухстадийные однократные ROW-методы с комплексными коэффициентами для автономных систем ОДУ
    Компьютерные исследования и моделирование, 2010, т. 2, № 1, с. 19-32

    Для автономных систем ОДУ рассмотрено простейшее подмножество двухстадийных схем Розенброка с комплексными коэффициентами, численная реализация которых требует одного LU-разложения и одного вычисления Якобиана за шаг интегрирования.

    Проведено теоретическое исследование точности и устойчивости таких методов. Получены новые A-устойчивые методы 3-го порядка точности с различными свойствами и возможностью простой оценки главного терма локальной погрешности, что необходимо для автоматического выбора шага. Проведено тестирование новых методов.

    Цитирований: 1 (РИНЦ).
  10. Веренцов С.И., Магеррамов Э.А., Виноградов В.А., Гизатуллин Р.И., Алексеенко А.Е., Холодов Я.А.
    Байесовская вероятностная локализация автономного транспортного средства путем ассимиляции сенсорных данных и информации о дорожных знаках
    Компьютерные исследования и моделирование, 2018, т. 10, № 3, с. 295-303

    Локализация транспортного средства является важной задачей в области интеллектуальных транспортных систем. Хорошо известно, что слияние показаний с разных датчиков (англ. Sensor Fusion) позволяет создавать более робастные и точные навигационные системы для автономных транспортных средств. Стандартные подходы, такие как расширенный фильтр Калмана или многочастичный фильтр, либо неэффективны при работе с сильно нелинейными данными, либо потребляют значительные вычислительные ресурсы, что осложняет их использование во встроенных системах. При этом точность сливаемых сенсоров может сильно различаться. Значительный прирост точности, особенно в ситуации, когда GPS (англ. Global Positioning System) не доступен, может дать использование ориентиров, положение которых заранее известно, — таких как дорожные знаки, светофоры, или признаки SLAM (англ. Simultaneous Localization and Mapping). Однако такой подход может быть неприменим в случае, если априорные локации неизвестны или неточны. Мы предлагаем новый подход для уточнения координат транспортного средства с использованием визуальных ориентиров, таких как дорожные знаки. Наша система представляет собой байесовский фреймворк, уточняющий позицию автомобиля с использованием внешних данных о прошлых наблюдениях дорожных знаков, собранных методом краудсорсинга (англ. Crowdsourcing — сбор данных широким кругом лиц). Данная статья представляет также подход к комбинированию траекторий, полученных с помощью глобальных GPS-координат и локальных координат, полученных с помощью акселерометра и гироскопа (англ. Inertial Measurement Unit, IMU), для создания траектории движения транспортного средства в неизвестной среде. Дополнительно мы собрали новый набор данных, включающий в себя 4 проезда на автомобиле в городской среде по одному маршруту, при которых записывались данные GPS и IMU смартфона, видеопоток с камеры, установленной на лобовом стекле, а также высокоточные данные о положении с использованием специализированного устройства Real Time Kinematic Global Navigation Satellite System (RTK-GNSS), которые могут быть использованы для валидации. Помимо этого, с использованием той же системы RTK-GNSS были записаны точные координаты знаков, присутствующих на маршруте. Результаты экспериментов показывают, что байесовский подход позволяет корректировать траекторию движения транспортного средства и дает более точные оценки при увеличении количества известной заранее информации. Предложенный метод эффективен и требует для своей работы, кроме показаний GPS/IMU, только информацию о положении автомобилей в моменты прошлых наблюдений дорожных знаков.

    Просмотров за год: 22.
Страницы: следующая последняя »

Журнал индексируется в Scopus

Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"

Международная Междисциплинарная Конференция МАТЕМАТИКА. КОМПЬЮТЕР. ОБРАЗОВАНИЕ.