Все выпуски
- 2025 Том 17
- 2024 Том 16
- 2023 Том 15
- 2022 Том 14
- 2021 Том 13
- 2020 Том 12
- 2019 Том 11
- 2018 Том 10
- 2017 Том 9
- 2016 Том 8
- 2015 Том 7
- 2014 Том 6
- 2013 Том 5
- 2012 Том 4
- 2011 Том 3
- 2010 Том 2
- 2009 Том 1
-
Тесты проверки параллельной организации логических вычислений, основанные на алгебре и автоматах
Компьютерные исследования и моделирование, 2017, т. 9, № 4, с. 621-638Работа продолжает опубликованные ранее исследования по способности человека повышать производительность обработки информации при параллельном выполнении нескольких логических операций заданного вида. В статье предлагаются новые тесты, позволяющие выявлять указанную способность человеческого мозга в серии предъявлений. Производительность человека определяется средним количеством информации, которую обрабатывает человек в единицу времени, решая серию тестовых задач. Сложность задачи в каждой серии тестов определяется средним количеством логических операций, которые надо выполнить для решения с учетом статистических свойств серии задач. Тесты строятся таким образом, чтобы сложность контролировалась. Изучается зависимость производительности испытуемого от сложности задач в серии. Если человек использует последовательный алгоритм решения и не меняет скорости выполнения логических операций, то производительность не зависит от сложности и среднее время решения задачи в серии примерно пропорционально сложности. Если скорость выполнения операций растет с повышением сложности (растет концентрация внимания), то увеличивается и производительность. Тот же эффект возникает, если человек при достаточно высокой сложности задачи начинает выполнять несколько логических операций одновременно (параллельные вычисления). Для контроля причин роста производительности строятся контрольные тесты на том же классе логических операций, в которых параллельная организация счета малоэффективна. Если рост производительности наблюдается как на основных, так и на контрольных тестах, то причиной роста производительности является увеличение быстродействия. Если же на контрольных тестах нет роста производительности, а на основных тестах рост имеется, то причиной роста является параллельный счет. С точки зрения теории операций это означает использование одновременной работы нескольких процессоров, каждый из которых в единицу времени перерабатывает не более некоторого известного числа элементов входных данных или промежуточных результатов (производительность процессора). В данной статье предлагается система тестов, в которой используется аппарат универсальных алгебр и теории автоматов. Работа является продолжением цикла работ по исследованию способностей человека к параллельным вычислениям. Ранее использованные тесты в экспериментах показали эффективность методики. Основные предыдущие публикации на эту тему приведены в списке литературы. Задачи в новых предлагаемых тестах можно описать как вычисление результата серии последовательных однотипных операций из некоторой специальной алгебры. Если операция ассоциативная, то с помощью удачной группировки вычислений можно эффективно применить параллельный счет. Анализируется зависимость времени решения задачи от сложности. Чтобы выявлять ситуации, когда человек увеличивает быстродействие одного процессора по мере роста сложности, требуется предъявить серии задач с похожими операциями, но в неассоциативной алгебре. Для таких задач параллельный счет малоэффективен с точки зрения отношения прироста производительности к увеличению числа процессоров. Так формируется контрольная группа тестов. В статье рассмотрен еще один класс тестов, основанных на расчете траектории состояния заданного формального автомата при задании входной последовательности. Исследован специальный класс автоматов (реле), конструкция которых влияет на эффективность параллельного расчета финального состояния. Для всех тестов оценивается эффективность параллельного счета. Эксперименты с новыми тестами не входят в данную статью.
Ключевые слова: параллельный счет, психологический тест, алгебра, ассоциативность, формальный автомат.Просмотров за год: 14. Цитирований: 1 (РИНЦ). -
Стохастическая формализация газодинамической иерархии
Компьютерные исследования и моделирование, 2022, т. 14, № 4, с. 767-779Математические модели газовой динамики и ее вычислительная индустрия, на наш взгляд, далеки от совершенства. Мы посмотрим на эту проблематику с точки зрения ясной вероятностной микромодели газа из твердых сфер, опираясь как на теорию случайных процессов, так и на классическую кинетическую теорию в терминах плотностей функций распределения в фазовом пространстве; а именно, построим сначала систему нелинейных стохастических дифференциальных уравнений (СДУ), а затем обобщенное случайное и неслучайное интегро-дифференциальное уравнение Больцмана с учетом корреляций и флуктуаций. Ключевыми особенностями исходной модели являются случайный характер интенсивности скачкообразной меры и ее зависимость от самого процесса.
Кратко напомним переход ко все более грубым мезо-макроприближениям в соответствии с уменьшением параметра обезразмеривания, числа Кнудсена. Получим стохастические и неслучайные уравнения, сначала в фазовом пространстве (мезомодель в терминах СДУ по винеров- ским мерам и уравнения Колмогорова – Фоккера – Планка), а затем в координатном пространстве (макроуравнения, отличающиеся от системы уравнений Навье – Стокса и систем квазигазодинамики). Главным отличием этого вывода является более точное осреднение по скорости благодаря аналитическому решению стохастических дифференциальных уравнений по винеровской мере, в виде которых представлена промежуточная мезомодель в фазовом пространстве. Такой подход существенно отличается от традиционного, использующего не сам случайный процесс, а его функцию распределения. Акцент ставится на прозрачности допущений при переходе от одного уровня детализации к другому, а не на численных экспериментах, в которых содержатся дополнительные погрешности аппроксимации.
Теоретическая мощь микроскопического представления макроскопических явлений важна и как идейная опора методов частиц, альтернативных разностным и конечно-элементным.
-
Транспортное моделирование: усреднение ценовых матриц
Компьютерные исследования и моделирование, 2023, т. 15, № 2, с. 317-327В данной работе рассматриваются различные подходы к усреднению обобщенных цен передвижений, рассчитанных для разных способов передвижения в транспортной сети. Под способом передвижения понимается как вид транспорта, например легковой автомобиль или транспорт общего пользования, так и передвижение без использования транспорта, например пешком. Задача расчета матриц передвижений включает в себя задачу вычисления суммарных матриц, иными словами — оценку общего спроса на передвижения всеми способами, а также задачу расщепления матриц по способам передвижений, называемого также модальным расщеплением. Для расчета матриц передвижений используют гравитационные, энтропийные и иные модели, в которых вероятность передвижения между районами оценивается на основе некоторой меры удаленности этих районов друг от друга. Обычно в качестве меры дальности используется обобщенная цена передвижения по оптимальному пути между районами. Однако обобщенная цена передвижения отличается для разных способов передвижения. При расчете суммарных матриц передвижений возникает необходимость усреднения обобщенных цен по способам передвижения. К процедуре усреднения предъявляется естественное требование монотонности по всем аргументам. Этому требованию не удовлетворяют некоторые часто применяемые на практике способы усреднения, например усреднение с весами. Задача модального расщепления решается применением методов теории дискретного выбора. В частности, в рамках теории дискретного выбора разработаны корректные методы усреднения полезности альтернатив, монотонные по всем аргументам. Авторы предлагают некоторую адаптацию методов теории дискретного выбора для применения к вычислению усредненной цены передвижений в гравитационной и энтропийной моделях. Перенос формул усреднения из контекста модели модального расщепления в модель расчета матриц передвижений требует ввода новых параметров и вывода условий на возможное значение этих параметров, что и было проделано в данной статье. Также были рассмотрены вопросы перекалибровки гравитационной функции, необходимой при переходе на новый метод усреднения, если имеющаяся функция откалибрована с учетом использования средневзвешенной цены. Предложенные методики были реализованы на примере небольшого фрагмента транспортной сети. Приведены результаты расчетов, демонстрирующие преимущество предложенных методов.
Ключевые слова: мультиномиальный логит, модель дискретного выбора, модальный выбор, гравитационная функция. -
Модель формирования первичных поведенческих паттернов с адаптивным поведением на основе использования комбинации случайного поиска и опыта
Компьютерные исследования и моделирование, 2016, т. 8, № 6, с. 941-950Просмотров за год: 6. Цитирований: 2 (РИНЦ).В работе предложен адаптивный алгоритм, моделирующий процесс формирования начальных поведенческих навыков на примере системы «глаза–манипулятор» анимата. Ситуация формирования начальных поведенческих навыков возникает, например, когда ребенок осваивает управление своими руками на основе понимания связи между исходно неидентифицированными пятнами на сетчатке своих глаз и положением реального предмета. Поскольку навыки управления телом не «вшиты» исходно в головной и спинной мозг на уровне инстинктов, то человеческому ребенку, как и большинству детенышей других млекопитающих, приходится осваивать эти навыки в режиме поискового поведения. Поисковое поведение начинается с метода проб и ошибок в чистом виде, затем его вклад постепенно уменьшается по мере освоения своего тела и окружающей среды. Поскольку образцов правильного поведения на этом этапе развития организм не имеет, то единственным способом выделения правильных навыков является положительное подкрепление при достижении цели. Ключевой особенностью предлагаемого алгоритма является фиксация в режиме импринтинга только завершающих действий, которые привели к успеху, или, что очень важно, привели к уже знакомой запечатленной ситуации, однозначно приводящей к успеху. Со временем непрерывная цепочка правильных действий удлиняется — максимально используется предыдущий позитивный опыт, а негативный «забывается» и не используется. Тем самым наблюдается постепенная замена случайного поиска целенаправленными действиями, что наблюдается и у реальных детенышей.
Тем самым алгоритм способен устанавливать соответствие между закономерностями окружающего мира и «внутренними ощущениями», внутренним состоянием самого анимата. В предлагаемой модели анимата использовалось 2 типа нейросетей: 1) нейросеть NET1, на вход которой подавались текущие положения кисти руки и целевой точки, а на выходе — двигательные команды, направляющие «кисть» манипулятора анимата к целевой точке; 2) нейросеть NET2, которая на входе получала координаты цели и текущей координаты «кисти», а на выходе формировала значение вероятности того, что анимату уже «знакома» эта ситуация и он «знает», как на нее реагировать. Благодаря такой архитектуре у анимата есть возможность опираться на «опыт» нейросети в распознанных ситуациях, когда отклик от сети NET2 близок к 1, и, с другой стороны, запускать случайный поиск, когда опыта функционирования в этой области зрительного поля у анимата нет (отклик NET2 близок к 0).
-
Синхронные компоненты финансовых временных рядов
Компьютерные исследования и моделирование, 2017, т. 9, № 4, с. 639-655В статье предлагается метод совместного анализа многомерных финансовых временных рядов, основанный на оценке набора свойств котировок акций в скользящем временном окне и последующем усреднении значений свойств по всем анализируемым компаниям. Основной целью анализа является построение мер совместного поведения временных рядов, реагирующих на возникновение синхронной или когерентной составляющей. Когерентность поведения характеристик сложной системы является важным признаком, позволяющим оценить приближение системы к резким изменениям своего состояния. Фундаментом для поиска предвестников резких изменений является общая идея увеличения корреляции случайных флуктуаций параметров системы по мере ее приближения к критическому состоянию. Приращения временных рядов стоимостей акций имеют выраженный хаотический характер и обладают большой амплитудой индивидуальных помех, на фоне которых слабый общий сигнал может быть выделен лишь на основе его коррелированности в разных скалярных компонентах многомерного временного ряда. Известно, что классические методы анализа, основанные на использовании корреляций между соседними отсчетами, являются малоэффективными при обработке финансовых временных рядов, поскольку с точки зрения корреляционной теории случайных процессов приращения стоимости акций формально имеют все признаки белого шума (в частности, «плоский спектр» и «дельта-образную» автокорреляционную функцию). В связи с этим предлагается перейти от анализа исходных сигналов к рассмотрению последовательностей их нелинейных свойств, вычисленных во временных фрагментах малой длины. В качестве таких свойств используются энтропия вейвлет-коэффициентов при разложении в базис Добеши, показатели мультифрактальности и авторегрессионная мера нестационарности сигнала. Построены меры син- хронного поведения свойств временных рядов в скользящем временном окне с использованием метода главных компонент, значений модулей всех попарных коэффициентов корреляции и множественной спектральной меры когерентности, являющейся обобщением квадратичного спектра когерентности между двумя сигналами. Исследованы акции 16 крупных российских компаний с начала 2010 по конец 2016 годов. С помощью предложенного метода идентифицированы два интервала времени синхронизации российского фондового рынка: с середины декабря 2013 г. по середину марта 2014 г. и с середины октября 2014 г. по середину января 2016 г.
Ключевые слова: финансовые временные ряды, вейвлеты, энтропия, мульти-фракталы, предсказуемость, синхронизация.Просмотров за год: 12. Цитирований: 2 (РИНЦ). -
Кластерный метод математического моделирования интервально-стохастических тепловых процессов в электронных системах
Компьютерные исследования и моделирование, 2020, т. 12, № 5, с. 1023-1038В работе разработан кластерный метод математического моделирования интервально-стохастических тепловых процессов в сложных технических, в частности электронных, системах (ЭС). В кластерном методе конструкция сложной ЭС представляется в виде тепловой модели, являющейся системой кластеров, каждый из которых содержит ядро, объединяющее в себе тепловыделяющие элементы, попадающие в данный кластер, оболочку кластера и поток среды, протекающий через кластер. Состояние теплового процесса в каждом кластере и в каждый момент времени характеризуется тремя интервально-стохастическими переменными состояния, а именно температурами ядра, оболочки и потока среды. При этом элементы каждого кластера, а именно ядро, оболочка и поток среды, находятся в тепловом взаимодействии между собой и элементами соседних кластеров. В отличие от существующих методов кластерный метод позволяет моделировать тепловые процессы в сложных ЭС с учетом неравномерного распределения температуры в потоке среды нагнетаемой в ЭС, сопряженного характера теплообмена между пото- ком среды в ЭС, ядрами и оболочками кластеров и интервально-стохастического характера тепловых процессов в ЭС, вызванного статистическим технологическим разбросом изготовления и монтажа электронных элементов в ЭС, и случайными флуктуациями тепловых параметров окружающей среды. Математическая модель, описывающая состояния тепловых процессов в кластерной тепловой модели, представляет собой систему интервально-стохастических матрично-блочных уравнений с матричными и векторными блоками, соответствующими кластерам тепловой модели. Решением интервально-стохастических уравнений являются статистические меры переменных состояния тепловых процессов в кластерах — математические ожидания, ковариации между переменными состояния и дисперсии. Методика применения кластерного метода показана на примере реальной ЭС.
-
Бистабильность и затухающие колебания в гомогенной модели вирусной инфекции
Компьютерные исследования и моделирование, 2023, т. 15, № 1, с. 111-124Развитие вирусной инфекции в организме представляет собой сложный процесс, зависящий от конкуренции между размножением вируса в клетках организма-хозяина и иммунным ответом. В данной работе для исследования различных режимов развития инфекции мы анализируем общую математическую модель иммунного ответа организма на вирусную инфекцию. Модель представляет собой систему из двух обыкновенных дифференциальных уравнений, описывающих изменение обезразмеренных концентраций вируса и иммунных клеток. Скорость пролиферации иммунных клеток представлена колоколообразной функцией концентрации вируса. Эта функция возрастает при малых концентрациях вируса, описывая антиген-стимулированную клональную экспансию иммунных клеток, и снижается при достаточно высоких концентрациях вируса, описывая подавление пролиферации иммунных клеток инфекцией. В зависимости от вирулентности вируса, силы иммунного ответа и начальной вирусной нагрузки, модель предсказывает несколько сценариев: (а) инфекция может быть полностью устранена, (б) она может оставаться на низком уровне при высокой концентрации иммунных клеток; (в) иммунная система может быть существенно истощена или (г) полностью истощена, что сопровождается (в, г) высокой концентрацией вируса. Анализ модели показывает, что концентрация вируса может колебаться по мере постепенного приближения к своему равновесному значению. Рассматриваемая модель может быть получена при редукции более общей модели — с дополнительным уравнением для общей вирусной нагрузки, в предположении, что общая вирусная нагрузка является быстрой переменной. В случае медленной кинетики общей вирусной нагрузки следует использовать указанную более общую модель.
-
Моделирование центробежных насосов с использованием программного комплекса FlowVision
Компьютерные исследования и моделирование, 2023, т. 15, № 4, с. 907-919В работе представлена методика моделирования центробежных насосов с использованием программного комплекса (ПК) FlowVision на примере магистрального нефтяного центробежного насоса НМ 1250-260. В качестве рабочего тела как при стендовых испытаниях, так и при численном моделировании используется вода. Расчет проводится в полной трехмерной постановке. Для учета утечек через уплотнения моделирование проводится вместе с корпусом насоса. С целью уменьшения требуемых вычислительных ресурсов в работе предлагается не моделировать течение в уплотнениях напрямую, а задавать утечки с помощью расхода. Влияние шероховатости поверхностей насоса учитывается в модели пристеночных функций. Модель пристеночных функций использует эквивалентную песочную шероховатость, и в работе применяется формула пересчета реальной шероховатости в эквивалентную песочную. Вращение рабочего колеса моделируется с помощью метода скользящих сеток: данный подход полностью учитывает нестационарное взаимодействие между ротором и диффузором насоса, что позволяет с высокой точностью разрешить рециркуляционные вихри, возникающие на режимах с низкой подачей.
Разработанная методика позволила добиться высокой согласованности результатов моделирования с экспериментом на всех режимах работы насоса. Отклонение на номинальном режиме по КПД составляет 0,42%, по напору — 1,9%. Отклонение расчетных характеристик от экспериментальных растет по мере увеличения подачи и достигает максимума на крайней правой точке характеристики (до 4,8% по напору). При этом среднее арифметическое относительное отклонение между численным моделированием и экспериментом для КПД насоса по шести точкам составляет 0,39% при погрешности измерения КПД в эксперименте 0,72%, что удовлетворяет требованиям к точности расчетов. В дальнейшем данная методика может быть использована для проведения серии оптимизационных и прочностных расчетов, так как моделирование не требует существенных вычислительных ресурсов и учитывает нестационарный характер течения в насосе.
Ключевые слова: FlowVision, компьютерное моделирование, гидродинамика, насосы, шероховатость, характеристики. -
Приближенная модель осесимметричного течения несжимаемой жидкости в бесконечно длинном круглом цилиндре, стенки которого составлены из упругих колец, основанная на решениях уравнения Кортевега – де Фриза
Компьютерные исследования и моделирование, 2024, т. 16, № 2, с. 375-394Изучается приближенная математическая модель кровотока в осесимметричном кровеносном сосуде. Под таким сосудом понимается бесконечно длинный круговой цилиндр, стенки которого состоят из упругих колец. Кровь рассматривается как несжимаемая жидкость, текущая в этом цилиндре. Повышенное давление вызывает радиально-симметричное растяжение упругих колец. Следуя Дж. Лэму, кольца расположены близко друг к другу так, что жидкость между ними не протекает. Для мысленной реализации этого достаточно предположить, что кольца обтянуты непроницаемой пленкой, не обладающей упругими свойствами. Упругостью обладают лишь кольца. Рассматриваемая модель кровотока в кровеносном сосуде состоит из трех уравнений: уравнения неразрывности, закона сохранения количества движения и уравнения состояния. Рассматривается приближенная процедура сведения рассматриваемых уравнений к уравнению Кортевега – де Фриза (КдФ), которая рассмотрена Дж. Лэмом не в полной мере, лишь для установления зависимости коэффициентов уравнения КдФ от физических параметров рассматриваемой модели течения несжимаемого флюида в осесимметричном сосуде. Из уравнения КдФ стандартным переходом к бегущим волнам получаются ОДУ третьего, второго и первого порядка соответственно. В зависимости от различных случаев расположения трех стационарных решений ОДУ первого порядка стандартно получаются кноидальная волна и солитон. Основное внимание уделено неограниченному периодическому решению, которое названо нами вырожденной кноидальной волной. Математически кноидальные волны описываются эллиптическими интегралами с параметрами, определяющими амплитуды и периоды. Солитон и вырожденная кноидальная волна описываются элементарными функциями. Указан гемодинамический смысл этих видов решений. Благодаря тому, что множества решений ОДУ первого, второго и третьего порядков не совпадают, установлено, что задачу Коши для ОДУ второго и третьего порядков можно задавать во всех точках, а для ОДУ первого порядка — лишь в точках роста или убывания. Задачу Коши для ОДУ первого порядка нельзя задавать в точках экстремума благодаря нарушению условия Липшица. Численно проиллюстрировано перерождение кноидальной волны в вырожденную кноидальную волну, которая может привести к разрыву стенок сосуда. Приведенная таблица описывает два режима приближения кноидальной волны к вырожденной кноидальной волне.
-
Методы прогнозирования и модели распространения заболеваний
Компьютерные исследования и моделирование, 2013, т. 5, № 5, с. 863-882Просмотров за год: 71. Цитирований: 19 (РИНЦ).Число работ, посвященных прогнозированию инфекционной заболеваемости, стремительно растет по мере появления статистики, позволяющей провести анализ. В настоящей статье представлен обзор основных решений, доступных сегодня для формирования как краткосрочных, так и долгосрочных проекций заболеваемости; указаны их ограничения и возможности практического применения. Рассмотрены традиционные методы анализа временных рядов — регрессионные и авторегрессионные модели; подходы, опирающиеся на машинное обучение — байесовские сети и искусственные нейронные сети; рассуждения на основе прецедентов; техники, базирующиеся на решении задачи фильтрации. Перечислены важнейшие направления разработки математических моделей распространения заболевания: классические аналитические модели, детерминированные и стохастические, а также современные имитационные модели, сетевые и агентные.
Журнал индексируется в Scopus
Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"





