Текущий выпуск Номер 1, 2025 Том 17

Все выпуски

Результаты поиска по 'математическое моделирование':
Найдено статей: 296
  1. Алексеенко А.Е., Холодов Я.А., Холодов А.С., Горева А.И., Васильев М.О., Чехович Ю.В., Мишин В.Д., Старожилец В.М.
    Разработка, калибровка и верификация модели движения трафика в городских условиях. Часть I
    Компьютерные исследования и моделирование, 2015, т. 7, № 6, с. 1185-1203

    В данной работе исследуется проблема унификации процедуры разработки и калибровки математической модели движения транспортного потока на автомобильной многополосной дороге в городских условиях. При этом использовался макроскопический подход, при котором транспортный поток описывается нелинейной системой гиперболических уравнений (для плотности и скорости потока) второго порядка. Полученная модель замыкается через уравнение зависимости интенсивности транспортного потока от его плотности, получаемое эмпирическим образом для каждого отдельного участка транспортной сети с использованием данных транспортных детекторов и автомобильных GPS-треков. Проверка работоспособности разработанной нами модели и методики калибровки проводилась с использованием численных расчетов, путем проведения вычисленных экспериментов на типичных данных, таких как моделирование движения трафика на заданном участке городской транспортной сети г. Москвы.

    Просмотров за год: 4. Цитирований: 2 (РИНЦ).
  2. Сафиуллина Л.Ф., Губайдуллин И.М.
    Исследование и редуцирование математической модели химической реакции методом Соболя
    Компьютерные исследования и моделирование, 2016, т. 8, № 4, с. 633-646

    В работе предложена методика упрощения математической модели химической реакции за счет сокращения числа стадий схемы реакции, основанная на анализе чувствительности целевой функции к изменению параметров модели. Функционал характеризует меру близости расчетных значений по исходной кинетической схеме реакции и схеме, полученной возмущением ее параметров. Преимуществом данной методики является возможность анализа сложных кинетических схем и редуцирования кинетических моделей до размеров, приемлемых с точки зрения точности описания и простоты практического использования. В функционал можно включить результаты вычислительных экспериментов при различных условиях проведения реакции и таким образом получить компактную схему, согласующуюся с детальной схемой для требуемого диапазона условий. Анализ чувствительности функционала модели позволяет выявить те параметры, которые обеспечивают наибольший (или наименьший) вклад на результат моделирования процесса. Математическая модель может содержать параметры, изменение значений которых не влияет на качественное и количественное описание процесса. Вклад таких параметров в значение функционала не будет иметь большого значения. Поэтому стадии, которые не служат для моделирования кинетических кривых веществ, можно исключить из рассмотрения. С применением данной методики была исследована кинетическая схема реакции окисления формальдегида, детальный механизм которой включает в себя 25 стадий и 15 веществ. На основании локального и глобального анализа чувствительности определены наиболее значимые стадии процесса, влияющие на общую динамику изменения концентраций целевых веществ реакции. Получена редуцированная схема модельной реакции окисления формальдегида, которая так же описывает поведение основных веществ реакции, как и детальная схема, но имеет значительно меньшее число стадий реакций. Приведены результаты сравнительного анализа моделирования реакции окисления формальдегида по детальной и редуцированной схемам. В статье приведены вычислительные аспекты решения задач химической кинетики глобальным методом Соболя И.М. на примере данной реакции. Приведены результаты сравнения локальных, глобальных и полных глобальных коэффициентов чувствительности.

    Просмотров за год: 10. Цитирований: 4 (РИНЦ).
  3. Эффективность производственного процесса непосредственно зависит от качества управления технологией, которая, в свою очередь, опирается на точность и оперативность обработки контрольно- измерительной информации. Разработка математических методов исследования системных связей и закономерностей функционирования и построение математических моделей с учетом структурных особенностей объекта исследований, а также написание программных продуктов для реализации данных методов являются актуальными задачами. Практика показала, что список параметров, имеющих место при исследовании сложного объекта современного производства, варьируется от нескольких десятков до нескольких сот наименований, причем степень воздействия каждого из факторов в начальный момент не ясна. Приступать к работе по непосредственному определению модели в этих условиях нельзя — объем требуемой информации может оказаться слишком велик, причем бóльшая часть работы по сбору этой информации будет проделана впустую из-за того, что степень влияния на параметры оптимизации большинства факторов из первоначального списка окажется пренебрежимо малой. Поэтому необходимым этапом при определении модели сложного объекта является работа по сокращению размерности факторного пространства. Большинство промышленных производств являются групповыми иерархическими процессами массового и крупносерийного производства, характеризующимися сотнями факторов. (Для примера реализации математических методов и апробации построенных моделей в основу были взяты данные Молдавского металлургического завода.) С целью исследования системных связей и закономерностей функционирования таких сложных объектов обычно выбираются несколько информативных параметров и осуществляется их выборочный контроль. В данной статье описывается последовательность приведения исходных показателей технологического процесса выплавки стали к виду, пригодному для построения математической модели с целью прогнозирования, внедрения новых видов стали и создание основы для разработки системы автоматизированного управления качеством продукции. В процессе преобразования выделяются следующие этапы: сбор и анализ исходных данных, построение таблицы слабокоррелированных параметров, сокращение факторного пространства с помощью корреляционных плеяд и метода весовых коэффициентов. Полученные результаты позволяют оптимизировать процесс построения модели многофакторного процесса.

    Просмотров за год: 6. Цитирований: 1 (РИНЦ).
  4. Максимова О.В., Григорьев В.И.
    Четырехфакторный вычислительный эксперимент для задачи случайного блуждания на двумерной решетке
    Компьютерные исследования и моделирование, 2017, т. 9, № 6, с. 905-918

    Случайный поиск в настоящее время стал распространенным и эффективным средством решения сложных задач оптимизации и адаптации. В работе рассматривается задача о средней длительности случайного поиска одним объектом другого в зависимости от различных факторов на квадратной решетке. Решение поставленной задачи было реализовано при помощи проведения полного эксперимента с 4 факторами и ортогональным планом в 54 строки. В рамках каждой строки моделировались случайные блуждания двух точек с заданными начальными условиями и правила перехода, затем замерялась продолжительность поиска одного объекта другим. В результате построена регрессионная модель, отражающая среднюю длительность случайного поиска объекта в зависимости от четырех рассматриваемых факторов, задающих начальные положения двух объектов, условия их передвижения и обнаружения. Среди рассмотренных факторов, влияющих на среднее время поиска, определены наиболее значимые. По построенной модели проведена интерпретация в задаче случайного поиска объекта. Важным результатом работы стало то, что с помощью модели выявлено качественное и количественное влияние первоначальных позиций объектов, размера решетки и правил перемещения на среднее время продолжительности поиска. Показано, что начальное соседство объектов на решетке не гарантирует быстрый поиск, если каждый из них передвигается. Помимо этого, количественно оценено, во сколько раз может затянуться или сократиться среднее время поиска объекта при увеличении скорости ищущего объекта на 1 ед., а также при увеличении размера поля на 1 ед., при различных начальных положениях двух объектов. Выявлен экспоненциальный характер роста числа шагов поиска объекта при увеличении размера решетки при остальных фиксированных факторах. Найдены условия наиболее большого увеличения средней продолжительности поиска: максимальная удаленность объектов в сочетании с неподвижностью одного из них при изменении размеров поля на 1 ед. (т. е., к примеру, с $4 \times 4$ на $5 \times 5$) может увеличить в среднем продолжительность поиска в $e^{1.69} \approx 5.42$. Поставленная в работе задача может быть актуальна с точки зрения применения как в погранометрике для обеспечения безопасности государства, так и, к примеру, в теории массового обслуживания.

    Просмотров за год: 21.
  5. Крат Ю.Г., Потапов И.И.
    Движение влекомых наносов над периодическим дном
    Компьютерные исследования и моделирование, 2018, т. 10, № 1, с. 47-60

    Движение влекомых наносов по дну напорного канала может приводить к потере устойчивости донной поверхности, когда на дне канала возникают донные волны. Исследование процесса развития донных волн связано с возможностью определения характера движения влекомых наносов по дну периодической формы. Несмотря на большое внимание многих исследователей к данной проблеме, вопрос о развитии процесса донных волн остается открытым и в настоящее время. В значительной мере это связано с тем, что при анализе данного процесса многие исследователи используют в своих работах феноменологические формулы движения влекомых наносов. Полученные в таких моделях результаты позволяют лишь качественно оценить процесс развития донных волн. По этой причине представляет интерес проведение анализа развития донных волн с использованием аналитической модели движения влекомых наносов.

    В работе предложена двумерная профильная математическая русловая модель, позволяющая исследовать движение влекомых наносов над периодическим дном. Особенностью математической модели является возможность расчета расхода влекомых наносов по аналитической модели с реологией Кулона–Прандтля, учитывающей влияние уклонов поверхности дна, придонных нормальных и касательных напряжений на процесс движения донного материала. Показано, что при движении донного материла по дну периодической формы диффузионные и напорные расходы влекомых наносов являются разнонаправленными и доминирующими по отношению к транзитному расходу. Изучались влияния параметра перекошенности донной волны на вклад транзитного, диффузионного и напорного расходов в полный расход влекомых наносов. Выполнено сравнение полученных результатов с численными решениями других авторов для донной поверхности косинусоидальной формы.

    Просмотров за год: 9.
  6. Михайленко С.А., Шеремет М.А.
    Моделирование конвективно-радиационного теплопереноса в дифференциально обогреваемой вращающейся полости
    Компьютерные исследования и моделирование, 2018, т. 10, № 2, с. 195-207

    Проведено математическое моделирование нестационарных режимов естественной конвекции и поверхностного излучения в замкнутой вращающейся квадратной полости. Рассматриваемая область решения имела две противоположные изотермические стенки, поддерживаемые при постоянных низкой и высокой температурах, остальные стенки являлись адиабатическими. Стенки считались диффузно-серыми. Анализируемая полость вращалась с постоянной угловой скоростью относительно оси, проходящей через центр полости и ориентированной ортогонально области решения. Математическая модель, сформулированная в безразмерных преобразованных переменных «функция тока – завихренность скорости» на основе приближений Буссинеска и диатермичности рабочей среды, была реализована численно методом конечных разностей. Уравнения дисперсии завихренности и энергии решались на основе локально-одномерной схемы А. А. Самарского. Диффузионные слагаемые аппроксимировались центральными разностями, конвективные — с использованием монотонной аппроксимации А. А. Самарского. Разностные уравнения решались методом прогонки. Разностное уравнение Пуассона для функции тока решалось отдельно с применением метода последовательной верхней релаксации. Оптимальное значение параметра релаксации подбиралось на основе вычислительных экспериментов. Анализ радиационного теплообмена проведен с использованием метода сальдо в варианте Поляка. Разработанный вычислительный код был протестирован на множестве сеток, а также верифицирован путем сопоставления полученных результатов при решении модельной задачи с экспериментальными и численными данными других авторов.

    Численные исследования нестационарных режимов естественной конвекции и поверхностного теплового излучения в замкнутой вращающейся полости проведены при следующих значениях безразмерных параметров: Ra = 103–106, Ta = 0–105, Pr = 0.7, ε = 0–0.9. Все распределения были получены для двадцатого полного оборота полости, когда наблюдается установление периодической картины течения и теплопереноса. В результате анализа установлено, что при малой угловой скорости вращения полости возможна интенсификация течения, а дальнейший рост скорости вращения приводит к ослаблению конвективного течения. Радиационное число Нуссельта незначительно изменяется при варьировании числа Тейлора.

    Просмотров за год: 20.
  7. В работе развивается иерархический метод математического и компьютерного моделирования интервально-стохастических тепловых процессов в сложных электронных системах различного назначения. Разработанная концепция иерархического структурирования отражает как конструктивную иерархию сложной электронной системы, так и иерархию математических моделей процессов теплообмена. Тепловые процессы, учитывающие разнообразные физические явления в сложных электронных системах, описываются системами стохастических, нестационарных и нелинейных дифференциальных уравнений в частных производных, и в силу этого их компьютерное моделирование наталкивается на значительные вычислительные трудности даже с применением суперкомпьютеров. Иерархический метод позволяет избежать указанных трудностей. Иерархическая структура конструкции электронной системы в общем случае характеризуется пятью уровнями: 1 уровень — активные элементы ЭС (микросхемы, электро-, радиоэлементы); 2 уровень — электронный модуль; 3 уровень — панель, объединяющая множество электронных модулей; 4 уровень — блок панелей; 5 уровень — стойка, установленная в стационарном или подвижном помещении. Иерархия моделей и моделирования стохастических тепловых процессов строится в порядке, обратном иерархической структуре конструкции электронной системы, при этом моделирование интервально-стохастических тепловых процессов осуществляется посредством получения уравнений для статистических мер. Разработанный в статье иерархический метод позволяет учитывать принципиальные особенности тепловых процессов, такие как стохастический характер тепловых, электрических и конструктивных факторов при производстве, сборке и монтаже электронных систем, стохастический разброс условий функционирования и окружающей среды, нелинейные зависимости от температуры факторов теплообмена, нестационарный характер тепловых процессов. Полученные в статье уравнения для статистических мер стохастических тепловых процессов представляют собой систему 14-ти нестационарных нелинейных дифференциальных уравнений первого порядка в обыкновенных производных, решение которых легко реализуется на современных компьютерах существующими численными методами. Рассмотрены результаты применения метода при компьютерном моделировании стохастических тепловых процессов в электронной системе. Иерархический метод применяется на практике при тепловом проектировании реальных электронных систем и создании современных конкурентоспособных устройств.

    Просмотров за год: 3.
  8. Кащенко Н.М., Ишанов С.А., Зинин Л.В., Мациевский С.В.
    Численный метод решения двумерного уравнения переноса при моделировании ионосферы Земли на основе монотонизированной Z-схемы
    Компьютерные исследования и моделирование, 2020, т. 12, № 1, с. 43-58

    Целью работы является исследование конечно-разностной схемы второго порядка точности, которая создана на основе Z-схемы. Это исследование состоит в численном решении нескольких двумерных дифференциальных уравнений, моделирующих перенос несжимаемой среды.

    Одна из реальных задач, при решении которых возникают подобные уравнения, — это численное моделирование сильно нестационарных среднемасштабных процессов в земной ионосфере. Вследствие того, что процессы переноса в ионосферной плазме контролируются магнитным полем, в поперечном к магнитному полю направлении предполагается выполнение условия несжимаемости плазмы. По той же причине в продольном к магнитному полю направлении могут возникать достаточно высокие скорости тепло- и массопереноса.

    Актуальной задачей при ионосферном моделировании является исследование плазменных неустойчивостей различных масштабов, которые возникают прежде всего в полярной и экваториальной областях. При этом среднемасштабные неоднородности, имеющие характерные размеры 1–50 км, создают условия для развития мелкомасштабных неустойчивостей. Последние приводят к явлению F-рассеяния, которое существенно влияет на точность работы спутниковых систем позиционирования, а также других космических и наземных радиоэлектронных систем.

    Используемые для одновременного моделирования таких разномасштабных процессов разностные схемы должны иметь высокое разрешение. Кроме того, эти разностные схемы должны быть, с одной стороны, достаточно точными, а с другой стороны — монотонными. Причиной таких противоречивых требований является то, что неустойчивости усиливают погрешности разностных схем, особенно погрешности дисперсионного типа. Подобная раскачка погрешностей при численном решении обычно приводит к нефизическим результатам.

    При численном решении трехмерных математических моделей ионосферной плазмы используется следующая схема расщепления по физическим процессам: первый шаг расщепления осуществляет продольный перенос, второй шаг расщепления осуществляет поперечный перенос. Исследуемая в работе конечно-разностная схема второго порядка точности приближенно решает уравнения поперечного пере- носа. Эта схема строится с помощью нелинейной процедуры монотонизации Z-схемы, которая является одной из схем второго порядка точности. При этой монотонизации используется нелинейная коррекция по так называемым «косым разностям». «Косые разности» содержат узлы расчетной сетки, относящиеся к разным слоям времени.

    Исследования проводились для двух случаев. В первом случае компоненты вектора переноса были знакопостоянны, во втором — знакопеременны в области моделирования. Численно получены диссипативные и дисперсионные характеристики схемы для различных видов ограничивающих функций.

    Результаты численных экспериментов позволяют сделать следующие выводы.

    1. Для разрывного начального профиля лучшие свойства показал ограничитель SuperBee.

    2. Для непрерывного начального профиля при больших пространственных шагах лучше ограничитель SuperBee, а при малых шагах лучше ограничитель Koren.

    3. Для гладкого начального профиля лучшие результаты показал ограничитель Koren.

    4. Гладкий ограничитель F показал результаты, аналогичные Koren.

    5. Ограничители разного типа оставляют дисперсионные ошибки, при этом зависимости дисперсионных ошибок от параметров схемы имеют большую вариабельность и сложным образом зависят от параметров этой схемы.

    6. Во всех расчетах численно подтверждена монотонность рассматриваемой разностной схемы. Для одномерного уравнения численно подтверждено свойство неувеличения вариации для всех указанных функций-ограничителей.

    7. Построенная разностная схема при шагах по времени, не превышающих шаг Куранта, является монотонной и показывает хорошие характеристики точности для решений разных типов. При превышении шага Куранта схема остается устойчивой, но становится непригодной для задач неустойчивости, поскольку условия монотонности перестают в этом случае выполняться.

  9. Ступицкий Е.Л., Андрущенко В.А.
    Физические исследования, численное и аналитическое моделирование взрывных явлений. Обзор
    Компьютерные исследования и моделирование, 2020, т. 12, № 3, с. 505-546

    В данном обзоре рассмотрен широкий круг явлений и задач, связанных с взрывом. Подробные численные исследования позволили обнаружить интересный физический эффект — образование дискретных вихревых структур сразу за фронтом ударной волны, распространяющейся в плотных слоях неоднородной атмосферы. Показана необходимость дальнейшего исследования такого рода явлений и определения степени их связи с возможным развитием газодинамической неустойчивости. Дан краткий анализ многочисленных работ по тепловому взрыву метеороидов при их высокоскоростном движении в атмосфере Земли. Большое внимание уделено разработке численного алгоритма для расчета одновременного взрыва нескольких фрагментов метеороидов и проанализированы особенности развития такого газодинамического течения. Показано, что разработанные раннее алгоритмы для расчета взрывов могут успешно использоваться для исследования взрывных вулканических извержений. В работе представлены и обсуждаются результаты таких исследований как для континентальных, так и для подводных вулканов с определенными ограничениями на условия вулканической активности.

    В работе выполнен математический анализ и представлены результаты аналитических исследований ряда важных физических явлений, характерных для взрывов высокой удельной энергии в ионосфере. Показано, что принципиальное значение для разработки достаточно полных и адекватных теоретических и численных моделей таких сложных явлений, как мощные плазменные возмущения в ионосфере, имеет предварительное лабораторное физическое моделирование основных процессов, определяющих эти явления. Показано, что наиболее близким объектом для такого моделирования является лазерная плазма. Приведены результаты соответствующих теоретических и экспериментальных исследований и показана их научная и практическая значимость. Дан краткий обзор работ последних лет по использованию лазерного излучения для лабораторного физического моделирования процессов воздействия ядерного взрыва на астроидные материалы.

    В результате выполненного в обзоре анализа удалось выделить и предварительно сформулировать некоторые интересные и весомые в научном и прикладном отношении вопросы, которые необходимо исследовать на основе уже полученных представлений: это мелкодисперсные химически активные системы, образующиеся при выбросе вулканов; маломасштабные вихревые структуры; генерация спонтанных магнитных полей из-за развития неустойчивости и их роль в трансформации энергии плазмы при ее разлете в ионосфере. Важное значение имеет также вопрос об исследовании возможного лабораторного физического моделирования теплового взрыва тел при воздействии высокоскоростного плазменного потока, который до настоящего времени имеет лишь теоретические толкования.

  10. Морозов А.Ю., Ревизников Д.Л.
    Параметрическая идентификация динамических систем на основе внешних интервальных оценок фазовых переменных
    Компьютерные исследования и моделирование, 2024, т. 16, № 2, с. 299-314

    Важную роль при построении математических моделей динамических систем играют обратные задачи, к которым, в частности, относится задача параметрической идентификации. В отличие от классических моделей, оперирующих точечными значениями, интервальные модели дают ограничения сверху и снизу на исследуемые величины. В работе рассматривается интерполяционный подход к решению интервальных задач параметрической идентификации динамических систем для случая, когда экспериментальные данные представлены внешними интервальными оценками. Цель предлагаемого подхода заключается в нахождении такой интервальной оценки параметров модели, при которой внешняя интервальная оценка решения прямой задачи моделирования содержала бы экспериментальные данные или минимизировала бы отклонение от них. В основе подхода лежит алгоритм адаптивной интерполяции для моделирования динамических систем с интервальными неопределенностями, позволяющий в явном виде получать зависимость фазовых переменных от параметров системы. Сформулирована задача минимизации расстояния между экспериментальными данными и модельным решением в пространстве границ интервальных оценок параметров модели. Получено выражение для градиента целевой функции. На репрезентативном наборе задач продемонстрированы эффективность и работоспособность предлагаемого подхода.

Страницы: « первая предыдущая следующая последняя »

Журнал индексируется в Scopus

Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"

Международная Междисциплинарная Конференция МАТЕМАТИКА. КОМПЬЮТЕР. ОБРАЗОВАНИЕ.