Текущий выпуск Номер 6, 2025 Том 17

Все выпуски

Результаты поиска по 'компьютерное моделирование':
Найдено статей: 121
  1. От редакции
    Компьютерные исследования и моделирование, 2024, т. 16, № 5, с. 1037-1040
  2. От редакции
    Компьютерные исследования и моделирование, 2025, т. 17, № 4, с. 525-528
  3. От редакции
    Компьютерные исследования и моделирование, 2025, т. 17, № 6, с. 1033-1035
  4. Малинецкий Г.Г.
    Молодость. Вечность. Синергетика
    Компьютерные исследования и моделирование, 2017, т. 9, № 3, с. 361-378

    Очень приятно вспоминать и рассказывать о выдающемся ученом, замечательном человеке, блестящем преподавателе, основоположнике нескольких научных направлений Дмитрии Сергеевиче Чернавском. Наверно, при этом подсознательно надеешься, что это поможет слушателям, читателям, коллегам, близким и дальним. Одним — увидеть в себе и развить черты, которыми обладал этот прекрасный человек. Другим — ответить на вопросы, которые он оставил нам. Третьим — порадоваться, что в нашем научном сообществе был человек, который творил, вдохновлял, помогал, заряжал своим оптимизмом и верой в знание, в людей, в перемены к лучшему и надеждой, что будущее состоится. Мне довелось дважды писать о Дмитрии Сергеевиче: один раз — в послесловии к его замечательной книге «Синергетика и информация» [Чернавский, 2004], второй раз — веселый текст к его 90-летию, дополненный коллегами и опубликованный в журнале «Компьютерные исследования и моделирование» в 2016 году [Профессору Дмитрию Чернавскому — 90 лет, 2016]. И сейчас пишу в третий раз — со светлой грустью и сожалением о том, что мгновения общения с ним, его вдохновенные выступления, праздничные застолья, на которых за сиюминутным угадывалось вечное, не остановить и не повторить. Без прошлого нет будущего. Без попыток следующих поколений вновь и вновь ответить на вечные вопросы, оставленные предшественниками, рвется «времен связующая нить». Без традиции трудно родиться новому… Поэтому прошлое, даже недавнее, стоит вспоминать, чтобы отыскать дорогу в будущее.

    Просмотров за год: 16. Цитирований: 1 (РИНЦ).
  5. Памяти А. С. Холодова
    Компьютерные исследования и моделирование, 2017, т. 9, № 5, с. 677-678
    Просмотров за год: 16.
  6. Холодов Я.А.
    Разработка сетевых вычислительных моделей для исследования нелинейных волновых процессов на графах
    Компьютерные исследования и моделирование, 2019, т. 11, № 5, с. 777-814

    В различных приложениях возникают задачи, моделируемые уравнениями в частных производных на графах (сетях, деревьях). Для исследования данных проблем и возникающих различных экстремальных ситуаций, для задач проектирования и оптимизации сетей различных типов в данной работе построена вычислительная модель, основанная на решении соответствующих краевых задач для нелинейных уравнений в частных производных гиперболического типа на графах (сетях, деревьях). В качестве приложений были выбраны три различные задачи, решаемые в рамках общего подхода сетевых вычислительных моделей. Первая — это моделирование движения транспортных потоков. При решении данной задачи использовался макроскопический подход, при котором транспортный поток описывается нелинейной системой гиперболических уравнений второго порядка. Проведенные расчеты и полученные результаты показали, что разработанная в рамках предложенного подхода модель хорошо воспроизводит реальную ситуацию на различных участках транспортной сети г. Москвы на значительных временных интервалах, а также может быть использована для выбора наиболее оптимальной стратегии организации дорожного движения в городе. Вторая — моделирование потоков данных в компьютерных сетях. В этой задаче потоки данных различных соединений в пакетной сети передачи данных моделировались в виде несмешивающихся потоков сплошной среды. Предложены концептуальная и математическая модели сети. Проведено численное моделирование в сравнении с системой имитационного моделирования сети NS-2. Полученные результаты показали, что в сравнении с пакетной моделью NS-2 разработанная нами потоковая модель демонстрирует значительную экономию вычислительных ресурсов, обеспечивая при этом хорошую степень подобия, и позволяет моделировать поведение сложных глобально распределенных IP-сетей передачи данных. Третья — моделирование распространения газовых примесей в вентиляционных сетях. Была разработана вычислительная математическая модель распространения мелкодисперсных или газовых примесей в вентиляционных сетях с использованием уравнений газовой динамики путем численного сопряжения областей разной размерности. Проведенные расчеты показали, что модель с хорошей точностью позволяет определять распределение газодинамических параметров в трубопроводной сети и решать задачи динамического управления вентиляцией.

  7. Соколов С.В.
    Памяти Алексея Владимировича Борисова
    Компьютерные исследования и моделирование, 2021, т. 13, № 1, с. 9-14

    24 января ушел из жизни блестящий ученый, доктор физико-математических наук, профессор, лауреат премии имени С. В. Ковалевской Алексей Владимирович Борисов. Алексей Владимирович родился и вырос в Москве. Окончив среднюю школу, он поступил на факультет специального машиностроения МВТУ им. Н.Э. Баумана. Уже во время учебы Алексей Владимирович посещает научный семинар на механико-математическом факультете Московского государственного университета им. М.В. Ломносова, что во многом определяет направление его будущих исследований. После защиты кандидатской диссертации Алексей Владимирович создает в Ижевске научную группу, его последующая научная биография очень широка: Екатеринбург, Чебоксары, Иннополис, Долгопрудный, Москва. Борисов основывает и воз- главляет серию научных журналов: «Регулярная и хаотическая динамика», «Нелинейная динамика»; является главным редактором в журналах «Вестник Удмуртского университета», «Компьютерные исследования и моделирование». Научное наследие А. В. Борисова обширно, список публикаций составляет более 200 работ, более 170 из которых опубликованы в журналах, индексируемых международными базами Scopus и Web of Science. Его перу принадлежит более 10 монографий.

  8. Полосин В.Г.
    Квантильные меры формы для распределений с тяжелыми хвостами
    Компьютерные исследования и моделирование, 2024, т. 16, № 5, с. 1041-1077

    Современная литература содержит многочисленные примеры применения распределений с тяжелыми хвостами для прикладных исследований сложных систем. Моделирование экстремальных данных обычно ограничено небольшим набором форм распределений, которые исторически применяются в данной области прикладных исследований. Расширение набора форм возможно посредством сопоставления мер форм распределений. В работе на примере бета-распределения второго рода показано, что неопределенность моментов тяжелохвостых бета-распределений ограничивает применимость классических методов моментов для исследования их форм. На данном этапе сохраняется актуальность построения методов сопоставления распределений с помощью квантильных мер формы, которые освобождены от ограничений на параметры формы. Цель работы состоит в компьютерном исследовании возможности построения пространства квантильных мер форм для проведения сравнения распределений с тяжелыми хвостами. На основе компьютерного моделирования проводится картирование реализаций распределений в пространстве параметрических, квантильных и информационных мер формы. Картирование распределений в пространстве только параметрических мер формы показало, что наложение множества распределений с тяжелыми хвостами в пространстве квантильных мер асимметрии и эксцесса не позволяет сопоставить формы распределений, принадлежащие разным типам распределений. Хорошо известно, что информационные меры содержат дополнительную информацию о мере формы распределений. В работе предложен квантильный коэффициент энтропии в качестве дополнительной независимой меры формы, построенной на отношении интервалов энтропийной и квантильной неопределенностей. На примере логнормального распределения и распределения Парето иллюстрируются возможности сравнения форм распределений с реализациями бета-распределения второго рода. В частности показано, что, несмотря на близость положений форм в трехмерном пространстве, формы реализаций логнормального распределения отсутствуют среди реализаций бета-распределения второго рода. Картирование положения устойчивых распределений в трехмерном пространстве квантильных мер форм позволило оценить параметры формы бета-распределения второго рода, для которого форма наиболее близка к форме распределения Леви. Из материала статьи следует, что отображение распределений в трехмерном пространстве квантильных мер форм значительно расширяет возможность сравнения форм для распределений с тяжелыми хвостами.

  9. В работе представлены результаты теоретического исследования особенностей статистического распределения фазы квазигармонического сигнала, формируемого в результате воздействия гауссовского шума на исходно гармонический сигнал. Выявленные особенности распределения фазы легли в основу развиваемого оригинального метода оценивания параметров исходного, неискаженного сигнала. Показано, что задача оценивания исходного значения фазы может эффективно решаться расчетом математического ожидания результатов выборочных измерений фазы, в то время как для решения задачи оценивания второго параметра распределения фазы — параметра уровня сигнала относительно шума — предлагается использовать зависимость дисперсии выборочных значений фазы от данного параметра. Для решения этой задачи используются полученные в явном виде аналитические формулы для моментов низших порядков распределения фазы, развит и обоснован новый подход к оцениванию параметров квазигармонического сигнала на основе измерения величины второго центрального момента, т. е. разброса выборочных значений фазы. В частности, применение данного метода обеспечивает высокоточное измерение амплитудных характеристик анализируемого сигнала посредством проведения лишь фазовых измерений. Численные результаты, полученные в ходе проведенного компьютерного моделирования, подтверждают теоретические выводы и эффективность разработанного метода. В работе обоснованы существование и единственность решения задачи оценивания параметров сигнала методом моментов. Показано, что функция, отображающая зависимость второго центрального момента от искомого параметра отношения сигнала к шуму, является монотонно убывающей и тем самым однозначной функцией искомого параметра. Разработанный метод оценивания параметров сигнала представляет интерес для решения широкого круга научных и прикладных задач, связанных с необходимостью измерения уровня сигнала и его фазы, в таких областях, как обработка данных в системах медицинской диагностической визуализации, обработка радиосигналов, радиофизика, оптика, радионавигация, метрология.

  10. Тихов М.С., Бородина Т.С.
    Математическая модель и компьютерный анализ критериев однородности зависимости «доза–эффект»
    Компьютерные исследования и моделирование, 2012, т. 4, № 2, с. 267-273

    Данная работа посвящена сравнению двух критериев однородности: критерия χ2, основанного на таблицах сопряженности признаков 2 × 2, и критерия однородности, основанного на асимптотических распределениях суммируемых квадратичных уклонений оценок функции распределения в модели зависимости «доза–эффект». Оценка мощности критериев производится при помощи компьютерного моделирования. Для построения функций эффективности используется метод ядерной оценки регрессии, основанный на оценке Надарая–Ватсона.

    Просмотров за год: 6.
Страницы: « первая предыдущая следующая последняя »

Журнал индексируется в Scopus

Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"

Международная Междисциплинарная Конференция МАТЕМАТИКА. КОМПЬЮТЕР. ОБРАЗОВАНИЕ.