Текущий выпуск Номер 5, 2025 Том 17

Все выпуски

Результаты поиска по 'алгоритм':
Найдено статей: 331
  1. Муравлев В.И., Браже А.Р.
    Обесшумливание данных динамической флуоресцентной микроскопии при помощи двухэтапного HOSVD-разложения
    Компьютерные исследования и моделирование, 2025, т. 17, № 4, с. 529-542

    Как правило, данные конфокальной и многофотонной лазерной сканирующей микроскопии страдают от низкого уровня полезного сигнала и высокого вклада дробового шума, связанного со стохастическим характером испускания фотонов флуорофором. Это осложняет задачу подавления шума и выделения полезного сигнала в таких данных. В настоящее время популярны нейросетевые алгоритмы улучшения изображений, однако они часто представляют собой «черный ящик» и требуют длительного обучения на конкретных наборах данных. В работе предлагается алгоритм подавления шума для данных динамической флуоресцентной микроскопии, опирающийся на наличие пространственно-временных локальных корреляций в полезном сигнале и на отсутствие пространственных корреляций в шумовой компоненте. Сингулярное разложение матриц (SVD), производящее спектральное разложение матрицы ковариации, — распространенный способ низкоранговой аппроксимации двумерных массивов, концентрирующий скоррелированный сигнал в нескольких первых компонентах разложения. Однако данные динамической микроскопии представляют собой трехмерные массивы или тензоры большей размерности, поэтому использование тензорных разложений потенциально может улучшить результат подавления шума по сравнению с обычным SVD. В основе алгоритма — двухэтапное применение усеченного сингулярного разложения высшего порядка (HOSVD) с введением порога для коэффициентов и последующим обратным преобразованием, сначала для локальных трехмерных окон в пространстве TXY (3D-HOSVD), а затем для пространственно объединенных групп трехмерных окон (4D-HOSVD). Для валидации алгоритма используются синтетические данные кальциевой сигнализации в астроцитах, в которых концентрация кальция транслируется в сигнал флуоресценции, значения которого в каждом кадре и каждом пикселе затем служат математическим ожиданием и дисперсией для сэмплирования случайной величины из непрерывного аналога пуассоновского распределения. Проведен анализ чувствительности алгоритма от параметров понижения ранга вдоль размерности временных компонент и группового ранга, длины локального окна и порога коэффициентов разложения. Несмотря на наличие мультипликативного шума, предлагаемый алгоритм демонстрирует значительное улучшение анализируемого сигнала, увеличивая соотношение «сигнал/шум» (PSNR) более чем на 20 дБ. Данный метод не опирается на предположения относительно разреженности или гладкости сигнала и может быть использован в качестве одного из этапов обработки данных динамической флуоресцентной микроскопии для самых различных типов данных.

  2. В работе рассматривается задача параметрической идентификации дискретных линейных стохастических систем, представленных уравнениями в пространстве состояний, с аддитивными и мультипликативными шумами. Предполагается, что уравнения состояния и измерения дискретной линейной стохастической системы зависят от неизвестного параметра, подлежащего идентификации.

    Представлен новый подход к построению градиентных методов параметрической идентификации в классе дискретных линейных стохастических систем с аддитивными и мультиплика- тивными шумами, основанный на применении модифицированной взвешенной ортогонализации Грама – Шмидта (MWGS) и алгоритмов дискретной фильтрации информационного типа.

    Основными теоретическими результатами данной работы являются: 1) новый критерий идентификации в терминах расширенного информационного LD-фильтра; 2) новый алгоритм вычисления значений производных по параметру неопределенности дискретной линейной стохастической системы в расширенном информационном LD-фильтре на основе прямой процедуры модифицированной взвешенной ортогонализации Грама – Шмидта; 3) новый метод вычисления градиента критерия идентификации на основе предложенного дифференцированного расширенного информационного LD-фильтра.

    Преимуществом предложенного подхода является применение численно устойчивой к ошибкам машинного округления MWGS-ортогонализации, лежащей в основе разработанных методов и алгоритмов. Информационный LD-фильтр сохраняет симметричность и положительную определенность информационных матриц. Разработанные алгоритмы имеют блочно-матричную структуру, удобную для компьютерной реализации.

    Все разработанные алгоритмы реализованы на языке MATLAB. Проведены серии численных экспериментов, результаты которых демонстрируют работоспособность предложенного подхода на примере решения задачи идентификации параметров математической модели сложной механической системы.

    Полученные результаты могут быть использованы для построения методов параметрической идентификации математических моделей, представленных в пространстве состояний дискретными линейными стохастическими системами с аддитивными и мультипликативными шумами.

  3. Строганов А.В., Аристов В.В.
    Вероятностные аспекты метода «компьютерной аналогии» для решения дифференциальных уравнений
    Компьютерные исследования и моделирование, 2009, т. 1, № 1, с. 21-31

    Развивается и обосновывается метод, позволяющий получить явную форму решения в виде отрезков рядов по степеням шага аргумента. Формализуется алгоритм, элементы которого используют аналогию с представлением и обработкой чисел в компьютере: ограничение в разрядной сетке и переброс разрядов. При перебросе разряда выявляются фрактально-стохастические свойства алгоритма, дающие возможность осреднять неизвестные промежуточные шаги в старших разрядах. Строятся решения нелинейных дифференциальных уравнений и системы уравнений.

    Просмотров за год: 3. Цитирований: 1 (РИНЦ).
  4. Карпов В.Е.
    Введение в распараллеливание алгоритмов и программ
    Компьютерные исследования и моделирование, 2010, т. 2, № 3, с. 231-272

    Описаны отличия технологии программирования для параллельных вычислительных систем от технологии последовательного программирования, аргументировано появление новых этапов в технологии: декомпозиция алгоритмов, назначение работ исполнителям, дирижирование и отображение логических исполнителей на физические. Затем кратко рассмотрены вопросы оценки производительности алгоритмов. Обсуждаются вопросы декомпозиции алгоритмов и программ на работы, которые могут бытьвы полнены параллельно.

    Просмотров за год: 53. Цитирований: 22 (РИНЦ).
  5. Корчак А.Б.
    Контроль точности при ускоренном схемотехническом моделировании
    Компьютерные исследования и моделирование, 2011, т. 3, № 4, с. 365-370

    Разработан алгоритм ускоренного моделирования КМОП СБИС (Сверх Больших Интегральных Схем с Комплементарной логикой на транзисторах Металл-Окисел-Проводник) под управлением точности. Алгоритм обеспечивает возможность проведения параллельного числительного эксперимента в много процессорной вычислительной среде. Ускорение расчета осуществляется за счет применения блочно-матричной и структурной (DCCC) декомпозиций. Особенность подхода состоит в выборе моментов и способов обмена параметрами и в применении многоскоростных методов интегрирования в процессе расчета подсистем. Благодаря этому имеется возможность оценивать и контролировать погрешность по требуемым характеристикам.

    Цитирований: 1 (РИНЦ).
  6. Воронцов К.В., Потапенко А.А.
    Регуляризация, робастность и разреженность вероятностных тематических моделей
    Компьютерные исследования и моделирование, 2012, т. 4, № 4, с. 693-706

    Предлагается обобщенное семейство вероятностных тематических моделей коллекций текстовых документов, в котором эвристики регуляризации, сэмплирования, частого обновления параметров, робастности относительно шума и фона могут включаться независимо друг от друга в любых сочетаниях, порождая как известные модели PLSA, LDA, CVB0, SWB, так и новые. Показано, что робастная тематическая модель на основе PLSA, разделяющая термины на тематические, шумовые и фоновые, не нуждается в регуляризации и обеспечивает разреженность искомых дискретных распределений тем в документах и терминов в темах.

    Просмотров за год: 25. Цитирований: 12 (РИНЦ).
  7. Клименко А.А., Угольницкий Г.А.
    Подсистема «Разработчик» системы приема коммунальных платежей
    Компьютерные исследования и моделирование, 2013, т. 5, № 1, с. 25-36

    В работе рассматривается одна из ключевых подсистем приема коммунальных платежей «Разработчик». Описана разработанная система массового обслуживания, которая моделирует данную подсистему. Поставлена и решена задача о распределении ресурсов (в решении использовался модифицированный «венгерский» алгоритм). Приведено описание имитационной (агентной) модели данной подсистемы и результаты имитационных экспериментов.

  8. Ракчеева Т.А.
    Критерии и сходимость фокусной аппроксимации
    Компьютерные исследования и моделирование, 2013, т. 5, № 3, с. 379-394

    Исследуются методы решения задачи фокусной аппроксимации — приближения по точечно заданной гладкой замкнутой эмпирической кривой многофокусными лемнискатами. Анализируются критерии и сходимость разработанных методов приближения, как в вещественной, так и в комплексной интерпретации. Доказывается топологическая эквивалентность используемых критериев.

    Просмотров за год: 2.
  9. Представлены результаты расчетов стационарной скорости распространения пламени с использованием соотношения, полученного на основе термодинамического вариационного принципа. Показано, что предложенный вычислительный алгоритм обеспечивает устойчивую сходимость итерационного процесса при любом начальном приближении значительно отличающемся от искомого решения.

    Просмотров за год: 1. Цитирований: 1 (РИНЦ).
  10. Шапошников А.А., Шапошникова Е.В., Шапошников А.И.
    К вопросу о качестве работы алгоритмов слежения за объектами
    Компьютерные исследования и моделирование, 2014, т. 6, № 4, с. 495-502

    Разобран алгоритм трекинга, позволяющий в процессе слежения учитывать независимые изменения вертикального и горизонтального размеров и ориентации объекта слежения. Показано, что в процессе слежения определяющим является учет всех характеристик области слежения, второстепенным — предсказание положения объекта.

    Просмотров за год: 4. Цитирований: 2 (РИНЦ).
Страницы: « первая предыдущая следующая последняя »

Журнал индексируется в Scopus

Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"

Международная Междисциплинарная Конференция МАТЕМАТИКА. КОМПЬЮТЕР. ОБРАЗОВАНИЕ.