Текущий выпуск Номер 5, 2025 Том 17

Все выпуски

Результаты поиска по '<i>А</i>-устойчивость':
Найдено статей: 182
  1. Пехтерев А.А., Домащенко Д.В., Гусева И.А.
    Моделирование трендов динамики объема и структуры накопленной кредитной задолженности в банковской системе
    Компьютерные исследования и моделирование, 2019, т. 11, № 5, с. 965-978

    Объем и структура накопленной кредитной задолженности перед банковской системой зависят от множества факторов, важнейшим из которых является текущий и ожидаемый уровень процентных ставок. Изменения в поведении заемщиков в ответ на сигналы денежно-кредитной политики позволяют разрабатывать эконометрические модели, представляющие динамику структуры кредитного портфеля банковской системы по срокам размещения средств. Эти модели помогают рассчитать показатели, характеризующие влияние регулирующих действий со стороны центрального банка на уровень процентного риска в целом. В работе проводилась идентификация четырех видов моделей: дискретной линейной модели, основанной на передаточных функциях, модели в пространстве состояний, классической эконометрической модели ARMAX и нелинейной модели типа Гаммерштейна – Винера. Для их описания использовался формальный язык теории автоматического управления, а для идентификации — программный пакет MATLAB. В ходе исследования было выявлено, что для краткосрочного прогнозирования объема и структуры кредитной задолженности больше всего подходит дискретная линейная модель в пространстве состояний, позволяющая прогнозировать тренды по структуре накопленной кредитной задолженности на прогнозном горизонте в 1 год. На примере реальных данных по российской банковской системе модель показывает высокую чувствительность реакции на изменения в денежно-кредитной политике, проводимой центральным банком РФ, структуры кредитной задолженности по срокам ее погашения. Так, при резком повышении процентных ставок в ответ на внешние рыночные шоки заемщики предпочитают сокращать сроки кредитования, при этом общий уровень задолженности повышается прежде всего за счет возрастающей переоценки номинального долга. При формировании устойчивого тренда снижения процентных ставок структура задолженности смещается в сторону долгосрочных кредитов.

  2. Гиричева Е.Е.
    Анализ неустойчивости системы «хищник–жертва», вызванной таксисом, на примере модели сообщества планктона
    Компьютерные исследования и моделирование, 2020, т. 12, № 1, с. 185-199

    В работе представлена модель типа «хищник–жертва», описывающая пространственно-временную динамику планктонного сообщества с учетом биогенных элементов. Система описывается уравнениями типа «реакция–диффузия–адвекция» в одномерной области, соответствующей вертикальному столбу воды в поверхностном слое. Адвективный член уравнения хищника описывает вертикальные перемещения зоопланктона в направлении градиента фитопланктона. Исследование посвящено определению условий возникновения пространственно-неоднородных структур, генерируемых системой под воздействием этих перемещений (таксиса). В предположении равных коэффициентов диффузии всех компонент модели анализируется неустойчивость системы в окрестности гомогенного равновесия к малым пространственно-неоднородным возмущениям.

    В результате линейного анализа получены условия для возникновения неустойчивости Тьюринга и волновой неустойчивости. Определено, что соотношения между параметрами локальной кинетики системы определяют возможность потери устойчивости системой и тип неустойчивости. В качестве бифуркационного параметра в исследовании рассматривается скорость таксиса. Показано, что при малых значениях этого параметра система устойчива, а начиная с некоторого критического значения устойчивость может теряться, и система способна генерировать либо стационарные пространственно-неоднородные структуры, либо структуры, неоднородные и по времени, и по пространству. Полученные результаты согласуются с ранними исследованиями подобных двухкомпонентных моделей.

    В работе получен интересный результат, указывающий, что бесконечное увеличение скорости таксиса не будет существенно менять вид этих структур. Выявлено, что существует предел величины волнового числа, соответствующего самой неустойчивой моде. Это значение и определяет вид пространственной структуры. В подтверждение полученных результатов в работе приведены варианты пространственно-временной динамики компонент модели в случае неустойчивости Тьюринга и волновой неустойчивости.

  3. Карпаев А.А., Алиев Р.Р.
    Применение упрощенного неявного метода Эйлера для решения задач электрофизиологии
    Компьютерные исследования и моделирование, 2020, т. 12, № 4, с. 845-864

    Рассматривается упрощенный неявный метод Эйлера как альтернатива явному методу Эйлера, являющемуся наиболее распространенным в области численного решения уравнений, описывающих электрическую активность нервных клеток и кардиоцитов. Многие модели электрофизиологии имеют высокую степень жесткости, так как описывают динамику процессов с существенно разными характерными временами: миллисекундная деполяризации предшествует значительно более медленной гиперполяризации при формировании потенциала действия в электровозбудимых клетках. Оценка степени жесткости в работе проводится по формуле, не требующей вычисления собственных значений матрицы Якоби системы ОДУ. Эффективность численных методов сравнивается на примере типичных представителей из классов детальных и концептуальных моделей возбудимых клеток: модели Ходжкина–Хаксли для нейронов и Алиева–Панфилова для кардиоцитов. Сравнение эффективности численных методов проведено с использованием распространенных в биомедицинских задачах видов норм. Исследовано влияние степени жесткости моделей на величину ускорения при использовании упрощенного неявного метода: выигрыш во времени при высокой степени жесткости зафиксирован только для модели Ходжкина–Хаксли. Обсуждаются целесообразность применения простых методов и методов высоких порядков точности для решения задач электрофизиологии, а также устойчивость методов. Обсуждение позволяет прояснить вопрос о причинах отказа от использования высокоточных методов в пользу простых при проведении практических расчетов. На примере модели Ходжкина–Хаксли c различными степенями жесткости вычислены производные решения высших порядков и обнаружены их значительные максимальные абсолютные значения. Последние входят в формулы констант аппроксимации и, следовательно, нивелируют малость множителя, зависящего от порядка точности. Этот факт не позволяет считать погрешности численного метода малыми. Проведенный на качественном уровне анализ устойчивости явного метода Эйлера позволяет оценить вид функции параметров модели для описания границы области устойчивости. Описание границы области устойчивости, как правило, используется при априорном принятии решения о выборе величины шага численного интегрирования.

  4. Киреенков А.А., Жаворонок С.И., Нуштаев Д.В.
    О моделях шины, учитывающих как деформированное состояние, так и эффекты сухого трения в области контакта
    Компьютерные исследования и моделирование, 2021, т. 13, № 1, с. 163-173

    Предложена новая приближенная модель качения деформируемого колеса с пневматиком, позволяющая учесть как усилия в пневматике, так и влияние сил сухого трения на устойчивость прямолинейного качения колеса при прогнозировании явления шимми. Модель основана на теории сухого трения с комбинированнойкине матикойотно сительного движения соприкасающихся тел, т. е. при одновременном качении, скольжении и верчении при учете реальнойф ормы области контакта и распределения контактного давления. Главный вектор и главный момент сил, возникающих при контактном взаимодействии с сухим трением, определяются путем интегрирования по области контакта. При этом контактное давление покоя при нулевых скоростях относительного поступательного движения и верчения и в отсутствие качения определяется из решения статической контактной задачи для пневматика с учетом его реальной структуры и физических свойств материалов. В работе использована конечно-элементная модель типового пневматика с продольным протектором. Расчет осуществлен при фиксированном внутреннем давлении наддува, заданной вертикальной силе и коэффициенте трения покоя, равном 0.5. Получены также решения задач о напряженно-деформированном состоянии пневматика при кинематическом нагружении в боковом направлении и при скручивании относительно вертикальной оси. Показано, что с достаточной степенью точности контактное взаимодействие пневматика с абсолютно жесткой опорной поверхностью можно представить в виде двух этапов — адгезии и проскальзывания, при этом, однако, форма пятна контакта остается близкой к круговой. Построены диаграммы, аппроксимирующие численные решения, для боковой силы и момента; на начальном участке взаимодействия зависимости линейны и соответствуют упругой деформации пневматика, на втором участке величины силы и момента постоянны и соответствуют силе сухого трения и моменту трения верчения. Для последних участков получены приближенные выражения для продольной и боковой силы трения, а также момента трения верчения в соответствии с теорией сухого трения с комбинированной кинематикой. Полученная модель может трактоваться как комбинация модели упруго деформируемого колеса по Келдышу, катящегося без проскальзывания, и жесткого колеса по Климову –Журавлёву, взаимодействующего с опорой посредством сил сухого трения.

  5. Сафиуллина Л.Ф., Губайдуллин И.М.
    Анализ идентифицируемости математической модели пиролиза пропана
    Компьютерные исследования и моделирование, 2021, т. 13, № 5, с. 1045-1057

    Работа посвящена численному моделированию и исследованию кинетической модели пиролиза пропана. Изучение кинетики реакций является необходимой стадией моделирования динамики газового потока в реакторе.

    Кинетическая модель представляет собой нелинейную систему обыкновенных дифференциальных уравнений первого порядка с параметрами, роль которых играют константы скоростей стадий. Математическое моделирование процесса основано на использовании закона сохранения масс. Для решения исходной (прямой) задачи используется неявный метод решения жестких систем обыкновенных дифференциальных уравнений. Модель содержит 60 входных кинетических параметров и 17 выходных параметров, соответствующих веществам реакции, из которых наблюдаемыми являются только 9. В процессе решения задачи по оценке параметров (обратная задача) возникает вопрос неединственности набора параметров, удовлетворяющего имеющимся экспериментальным данным. Поэтому перед решением обратной задачи проводится оценка возможности определения параметров модели — анализ идентифицируемости.

    Для анализа идентифицируемости мы используем ортогональный метод, который хорошо себя зарекомендовал для анализа моделей с большим числом параметров. Основу алгоритма составляет анализ матрицы чувствительно- сти методами дифференциальной и линейной алгебры, показывающей степень зависимости неизвестных параметров моделей от заданных измерений. Анализ чувствительности и идентифицируемости показал, что параметры модели устойчиво определяются по заданному набору экспериментальных данных. В статье представлен список параметров модели от наиболее идентифицируемого до наименее идентифицируемого. Учитывая анализ идентифицируемости математической модели, были введены более жесткие ограничения на поиск слабоидентифицируемых параметров при решении обратной задачи.

    Обратная задача по оценке параметров была решена с использованием генетического алгоритма. В статье представлены найденные оптимальные значения кинетических параметров. Представлено сравнение экспериментальных и расчетных зависимостей концентраций пропана, основных и побочных продуктов реакции от температуры для разных расходов смеси. На основании соответствия полученных результатов физико-химическим законам и экспериментальным данным сделан вывод об адекватности построенной математической модели.

  6. Шардыко И.В., Копылов В.М., Волняков К.А.
    Разработка конструкции, моделирование и управление шарниром с переменной упругостью на основе магнитной пружины кручения
    Компьютерные исследования и моделирование, 2023, т. 15, № 5, с. 1323-1347

    С появлением промышленных роботов робототехника приобретает значение во всемирном масштабе как в экономике, так и в науке. Однако, их возможности сильно ограничены, особенно в части выполнения контактных задач, в которых есть необходимость регулирования или по крайней мере ограничения усилия в контакте. В определенный момент было замечено, что упругость в механической цепи шарнира, считавшаяся ранее негативным фактором, в этомо тношении напротив является полезной. Данное наблюдение привело к появлению роботов с упругими шарнирами, пригодных к выполнению контактных задач и кооперативной деятельности в частности, в результате чего их распространение сегодня становится всё шире. Многие исследователи стремились реализовать подобные устройства не только в виде простейших последовательных упругих приводов, но и посредствомбо лее сложных шарниров с переменной упругостью (ШПУ), способных изменять собственную механическую жесткость. Все упругие шарниры обеспечивают в определенной мере устойчивость к ударным нагрузкам и безопасность взаимодействия с объектами внешней среды, однако изменение жесткости позволяет получить дополнительные преимущества, такие как энерго-эффективность и адаптируемость к задачам.

    В настоящей статье представлена новая реализация ШПУ, с магнитной муфтой в качестве упругого элемента. Магнитная передача является бесконтактной, и потому обладает преимуществом с точки зрения снижения чувствительности к смещению и рассогласованию осей. Описание модели трения также упрощается. Кроме того, данная муфта обладает характеристикой жесткости, которая не только не возрастает резко с повышением нагрузки, но становится более плавной, и даже снижается после точки максимума. Вследствие этого, при достижении максимального момента, муфта проскальзывает, после чего положение равновесия уже определяется новой парой полюсов. В итоге данное решение снижает риск механического повреждения. В статье подробно рассмотрен процесс разработки шарнира, представлена его математическая модель. Также предложена реализация системы управления шарниром и проведено компьютерное моделирование, подтверждающее принятые в разработке решения.

  7. Садовых А., Иванов В.
    Улучшение DevSecOps с помощью непрерывного анализа и тестирования требований безопасности
    Компьютерные исследования и моделирование, 2024, т. 16, № 7, с. 1687-1702

    DevSecOps требует интеграции безопасности на каждом этапе разработки программного обеспечения для обеспечения безопасных и соответствующих требованиям приложений. Традиционные методы тестирования безопасности, часто выполняемые на поздних этапах разработки, недостаточны для решения задач, связанных с непрерывной интеграцией и непрерывной доставкой (CI/CD), особенно в сложных, критически важных секторах, таких как промышленная автоматизация. В данной статье мы предлагаем подход, который автоматизирует анализ и тестирование требований безопасности путем встраивания проверки требований в конвейер CI/CD. Наш метод использует инструмент ARQAN для сопоставления высокоуровневых требований безопасности с Руководствами по технической реализации безопасности (STIGs) с помощью семантического поиска, а также RQCODE для формализации этих требований в виде кода, предоставляя тестируемые и поддающиеся исполнению руководства по безопасности. Мы внедрили ARQAN и RQCODE в рамках CI/CD, интегрировав их с GitHub Actions для обеспечения проверки безопасности в реальномврем ени и автоматической проверки соответствия. Наш подход поддерживает стандарты безопасности, такие как IEC 62443, и автоматизирует оценку безопасности, начиная с этапа планирования, улучшая прослеживаемость и согласованность практик безопасности на протяжении всего конвейера. Предварительная оценка этого подхода в сотрудничестве с компанией по промышленной автоматизации показывает, что он эффективно охватывает критические требования безопасности, достигая автоматического соответствия 66,15% руководств STIG, относящихся к платформе Windows 10. Обратная связь от отраслевых специалистов подчеркивает его практичность: 85% требований безопасности сопоставлены с конкретными рекомендациями STIG, и 62% из этих требований имеют соответствующие тестируемые реализации в RQCODE. Эта оценка подчеркивает потенциал подхода для сдвига проверки безопасности на более ранние этапы разработки, способствуя более устойчивому и безопасному жизненному циклу DevSecOps.

  8. Жданова О.Л., Колбина Е.А., Фрисман Е.Я.
    Эволюционные эффекты неселективного равновесного промысла в генетически неоднородной популяции
    Компьютерные исследования и моделирование, 2025, т. 17, № 4, с. 717-735

    Оптимизация промысла остается важной задачей математической биологии. Концепция максимального равновесного изъятия MSY, популярная в теории оптимальной эксплуатации, предполагает поддержание численности популяции на уровне максимального воспроизводства, что в теории позволяет балансировать между экономической выгодой и сохранением биоресурсов. Однако этот подход имеет ограничения, обусловленные сложной структурой популяций и нелинейностью динамических процессов. Особую проблему представляют эволюционные последствия: селективный промысел изменяет условия отбора, что ведет к трансформации поведенческих характеристик, ухудшению качества потомства и изменению генофонда. Влияние неселективного промысла на генетический состав изучено меньше.

    В работе исследуется влияние неселективного промысла с постоянной долей изъятия на эволюцию генетически неоднородной популяции. Предполагается, что генетическое разнообразие контролируется одним локусом с двумя аллелями. При высокой и низкой численности преимущество получают разные генотипы: одни более плодовиты (r-стратегия), другие более устойчивы к ограничению по ресурсам (K-стратегия). Рассматривается классическая эколого-генетическая модель с дискретным временем в предположении, что приспособленность каждого из генотипов линейно зависит от популяционной численности. Включение в модель коэффициента промыслового изъятия позволяет связать задачу оптимизации промысла с задачей прогноза отбора генотипов.

    Аналитически показано, что при промысле, обеспечивающем максимальный устойчивый улов (MSY), равновесный генетический состав не меняется, а численность снижается вдвое, при этом тип генетического равновесия может измениться. Это связано с тем, что оптимальная доля изъятия для одного генетического равновесия не является оптимальной для других. В отсутствие промысла доминируют K-стратеги, но изъятие особей может сместить баланс в пользу r-стратегов, чья высокая плодовитость компенсирует потери. Определены критические уровни изъятия, при которых происходит смена доминирующей стратегии.

    Результаты объясняют, почему промысловые популяции медленно восстанавливаются после прекращения эксплуатации: промысел закрепляет адаптации, выгодные при изъятии, но снижающие устойчивость в естественных условиях. Например, у песцов в неволе закрепляются высокопродуктивные генотипы, тогда как в природе преобладают особи с меньшей плодовитостью, но большей выживаемостью. Это указывает на необходимость учета генетической динамики при разработке стратегий устойчивого промысла.

  9. Пак С.Я., Абакумов А.И.
    Модельное исследование процессов газообмена в фитопланктоне под влиянием фотосинтетических процессов и метаболизма
    Компьютерные исследования и моделирование, 2025, т. 17, № 5, с. 963-985

    В жизнедеятельности фитопланктона, как и любой живой системы, огромное значение имеет динамика различных газообразных веществ. Для водных растительных сообществ наиболее показательным является преобразование кислорода и углекислого газа. Эта динамика важна для глобального соотношения кислорода и углекислоты в атмосфере Земли. Цель работы состоит в исследовании средствами математического моделирования роли газообмена в жизнедеятельности водных растительных организмов, а именно фитопланктона. В работе предложена серия математических моделей динамики кислорода и углекислоты в организме (клетке) фитопланктона. Серия моделей построена по нарастающей степени сложности и количества моделируемых процессов. Вначале рассматривается простейшая модель только динамики газов, затем происходит переход к моделям со взаимодействием и взаимовлиянием газов на формирование и динамику энергоемких веществ и, через них, на ростовые процессы в растительном организме.

    В качестве основных процессов, сопряженных с производством и потреблением кислорода и углекислого газа, рассматриваются фотосинтез и дыхание. Эти два во многом взаимообратных по отношению к газодинамике явления лежат в основе моделей. В моделях исследуются свойства решений: равновесия и их устойчивость, динамические свойства решений. Выявлены различные виды равновесной устойчивости, возможные сложные нелинейные динамики. Эти свойства позволяют лучше ориентироваться при выборе модели для описания процессов с известным набором данных и сформулированными целями моделирования. Приведен пример сравнения эксперимента с его модельным описанием.

    Относительно динамики концентраций энергоемких веществ и плотности биомассы модели ориентированы на ростовые процессы организмов и продукционные процессы в популяциях и сообществах. Это является следующей цельюмо делирования — связать газодинамику по кислороду и углекислому газу с обменными процессами в растительных организмах. В дальнейшем модельные конструкции будут применены к анализу поведения экосистем при изменении среды обитания, в том числе по содержаниюгаз ообразных веществ.

  10. Колобов А.В., Полежаев А.А.
    Влияние случайной подвижности злокачественных клеток на устойчивость фронта опухоли
    Компьютерные исследования и моделирование, 2009, т. 1, № 2, с. 225-232

    Хемотаксис играет важную роль в процессах морфогенеза и структурообразования в живой природе. Этим свойством обладают как одноклеточные организмы, так и отдельные клетки многоклеточных организмов. Эксперименты in vitro показывают, что многие типы опухолевых клеток, особенно метастатически активные, также обладают хемотаксисом. Существует целый ряд работ по моделированию роста и инвазии опухоли, использующих модель Келлера-Сигела для учета хемотаксиса. Однако аккуратный учет этого типа подвижности затруднен отсутствием сколько-нибудь надежных количественных оценок параметров хемотаксического члена. С помощью двумерной математической модели роста и инвазии опухоли, учитывающей только случайную подвижность клеток и конвективные потоки внутри плотной ткани, мы показали, что за счет конкуренции возможен рост опухоли в направлении источников питательных веществ (сосудов) в отсутствии хемотаксиса.

    Просмотров за год: 5. Цитирований: 7 (РИНЦ).
Страницы: « первая предыдущая следующая последняя »

Журнал индексируется в Scopus

Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"

Международная Междисциплинарная Конференция МАТЕМАТИКА. КОМПЬЮТЕР. ОБРАЗОВАНИЕ.