Все выпуски
- 2025 Том 17
- 2024 Том 16
- 2023 Том 15
- 2022 Том 14
- 2021 Том 13
- 2020 Том 12
- 2019 Том 11
- 2018 Том 10
- 2017 Том 9
- 2016 Том 8
- 2015 Том 7
- 2014 Том 6
- 2013 Том 5
- 2012 Том 4
- 2011 Том 3
- 2010 Том 2
- 2009 Том 1
-
Улучшение DevSecOps с помощью непрерывного анализа и тестирования требований безопасности
Компьютерные исследования и моделирование, 2024, т. 16, № 7, с. 1687-1702DevSecOps требует интеграции безопасности на каждом этапе разработки программного обеспечения для обеспечения безопасных и соответствующих требованиям приложений. Традиционные методы тестирования безопасности, часто выполняемые на поздних этапах разработки, недостаточны для решения задач, связанных с непрерывной интеграцией и непрерывной доставкой (CI/CD), особенно в сложных, критически важных секторах, таких как промышленная автоматизация. В данной статье мы предлагаем подход, который автоматизирует анализ и тестирование требований безопасности путем встраивания проверки требований в конвейер CI/CD. Наш метод использует инструмент ARQAN для сопоставления высокоуровневых требований безопасности с Руководствами по технической реализации безопасности (STIGs) с помощью семантического поиска, а также RQCODE для формализации этих требований в виде кода, предоставляя тестируемые и поддающиеся исполнению руководства по безопасности. Мы внедрили ARQAN и RQCODE в рамках CI/CD, интегрировав их с GitHub Actions для обеспечения проверки безопасности в реальномврем ени и автоматической проверки соответствия. Наш подход поддерживает стандарты безопасности, такие как IEC 62443, и автоматизирует оценку безопасности, начиная с этапа планирования, улучшая прослеживаемость и согласованность практик безопасности на протяжении всего конвейера. Предварительная оценка этого подхода в сотрудничестве с компанией по промышленной автоматизации показывает, что он эффективно охватывает критические требования безопасности, достигая автоматического соответствия 66,15% руководств STIG, относящихся к платформе Windows 10. Обратная связь от отраслевых специалистов подчеркивает его практичность: 85% требований безопасности сопоставлены с конкретными рекомендациями STIG, и 62% из этих требований имеют соответствующие тестируемые реализации в RQCODE. Эта оценка подчеркивает потенциал подхода для сдвига проверки безопасности на более ранние этапы разработки, способствуя более устойчивому и безопасному жизненному циклу DevSecOps.
Ключевые слова: кибербезопасность, DevSecOps, DevOps, непрерывная интеграция, требования, требования к проектированию, тесты, обработка естественного языка, машинное обучение, SBERT, RQCODE, ARQAN, GITHUB. -
Эффективное и безошибочное сокрытие информации в гибридном домене цифровых изображений с использованием метаэвристической оптимизации
Компьютерные исследования и моделирование, 2023, т. 15, № 1, с. 197-210Сокрытие информации в цифровых изображениях является перспективным направлением кибербезопасности. Методы стеганографии обеспечивают незаметную передачу данных по открытому каналу связи втайне от злоумышленника. Эффективность встраивания информации зависит от того, насколько незаметным и робастным является скрытое вложение, а также от емкости встраивания. Однако показатели качества встраивания являются взаимно обратными и улучшение значения одного из них обычно приводит к ухудшению остальных. Баланс между ними может быть достигнут с помощью применения метаэвристической оптимизации. Метаэвристики позволяют находить оптимальные или близкие к ним решения для многих задач, в том числе трудно формализуемых, моделируя разные природные процессы, например эволюцию видов или поведение животных. В этой статье предлагается новый подход к сокрытию данных в гибридном пространственно-частотном домене цифровых изображений на основе метаэвристической оптимизации. В качестве операции встраивания выбрано изменение блока пикселей изображения в соответствии с некоторой матрицей изменений. Матрица изменений выбирается адаптивно для каждого блока с помощью алгоритмов метаэвристической оптимизации. В работе сравнивается эффективность трех метаэвристик, таких как генетический алгоритм (ГА), оптимизация роя частиц (ОРЧ) и дифференциальная эволюция (ДЭ), для поиска лучшей матрицы изменений. Результаты экспериментов показывают, что новый подход обеспечивает высокую незаметность встраивания, высокую емкость и безошибочное извлечение встроенной информации. При этом хранение и передача матриц изменений для каждого блока не требуются для извлечения данных, что уменьшает вероятность обнаружения скрытого вложения злоумышленником. Метаэвристики обеспечили прирост показателей незаметности и емкости по сравнению с предшествующим алгоритмом встраивания данных в коэффициенты дискретного косинусного преобразования по методу QIM [Evsutin, Melman, Meshcheryakov, 2021] соответственно на 26,02% и 30,18% для ГА, на 26,01% и 19,39% для ОРЧ, на 27,30% и 28,73% для ДЭ.
Журнал индексируется в Scopus
Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"