Все выпуски
- 2025 Том 17
- 2024 Том 16
- 2023 Том 15
- 2022 Том 14
- 2021 Том 13
- 2020 Том 12
- 2019 Том 11
- 2018 Том 10
- 2017 Том 9
- 2016 Том 8
- 2015 Том 7
- 2014 Том 6
- 2013 Том 5
- 2012 Том 4
- 2011 Том 3
- 2010 Том 2
- 2009 Том 1
-
Computational treatment of natural language text for intent detection
Компьютерные исследования и моделирование, 2024, т. 16, № 7, с. 1539-1554Intent detection plays a crucial role in task-oriented conversational systems. To understand the user’s goal, the system relies on its intent detector to classify the user’s utterance, which may be expressed in different forms of natural language, into intent classes. However, lack of data, and the efficacy of intent detection systems has been hindered by the fact that the user’s intent text is typically characterized by short, general sentences and colloquial expressions. The process of algorithmically determining user intent from a given statement is known as intent detection. The goal of this study is to develop an intent detection model that will accurately classify and detect user intent. The model calculates the similarity score of the three models used to determine their similarities. The proposed model uses Contextual Semantic Search (CSS) capabilities for semantic search, Latent Dirichlet Allocation (LDA) for topic modeling, the Bidirectional Encoder Representations from Transformers (BERT) semantic matching technique, and the combination of LDA and BERT for text classification and detection. The dataset acquired is from the broad twitter corpus (BTC) and comprises various meta data. To prepare the data for analysis, a pre-processing step was applied. A sample of 1432 instances were selected out of the 5000 available datasets because manual annotation is required and could be time-consuming. To compare the performance of the model with the existing model, the similarity scores, precision, recall, f1 score, and accuracy were computed. The results revealed that LDA-BERT achieved an accuracy of 95.88% for intent detection, BERT with an accuracy of 93.84%, and LDA with an accuracy of 92.23%. This shows that LDA-BERT performs better than other models. It is hoped that the novel model will aid in ensuring information security and social media intelligence. For future work, an unsupervised LDA-BERT without any labeled data can be studied with the model.
Ключевые слова: hate speech, intent classification, Twitter posts, sentiment analysis, opinion mining, intent identification from Twitter posts.
Computational treatment of natural language text for intent detection
Computer Research and Modeling, 2024, v. 16, no. 7, pp. 1539-1554Intent detection plays a crucial role in task-oriented conversational systems. To understand the user’s goal, the system relies on its intent detector to classify the user’s utterance, which may be expressed in different forms of natural language, into intent classes. However, lack of data, and the efficacy of intent detection systems has been hindered by the fact that the user’s intent text is typically characterized by short, general sentences and colloquial expressions. The process of algorithmically determining user intent from a given statement is known as intent detection. The goal of this study is to develop an intent detection model that will accurately classify and detect user intent. The model calculates the similarity score of the three models used to determine their similarities. The proposed model uses Contextual Semantic Search (CSS) capabilities for semantic search, Latent Dirichlet Allocation (LDA) for topic modeling, the Bidirectional Encoder Representations from Transformers (BERT) semantic matching technique, and the combination of LDA and BERT for text classification and detection. The dataset acquired is from the broad twitter corpus (BTC) and comprises various meta data. To prepare the data for analysis, a pre-processing step was applied. A sample of 1432 instances were selected out of the 5000 available datasets because manual annotation is required and could be time-consuming. To compare the performance of the model with the existing model, the similarity scores, precision, recall, f1 score, and accuracy were computed. The results revealed that LDA-BERT achieved an accuracy of 95.88% for intent detection, BERT with an accuracy of 93.84%, and LDA with an accuracy of 92.23%. This shows that LDA-BERT performs better than other models. It is hoped that the novel model will aid in ensuring information security and social media intelligence. For future work, an unsupervised LDA-BERT without any labeled data can be studied with the model.
-
Численная идентификация модели дегидрирования в грид-системе на базе BOINC
Компьютерные исследования и моделирование, 2013, т. 5, № 1, с. 37-45В работе рассматривается обратная задача определения по экспериментальным данным параметров модели выделения водорода из порошка гидрида металла. Методом слепого поиска в пространстве параметров установлено, что задача имеет многочисленные физически разумные решения. Решения задачи получены с помощью высокопроизводительного численного моделирования в грид–системе на базе платформы BOINC.
Ключевые слова: обратная задача, оценка параметров, математическое моделирование, вычислительные методы в физике, грид-системы, BOINC.
Numerical identification of the dehydriding model in a BOINC-based grid system
Computer Research and Modeling, 2013, v. 5, no. 1, pp. 37-45Цитирований: 6 (РИНЦ).In the paper we consider the inverse problem of evaluating kinetic parameters of the model of dehydriding of metal powder using experimental data. The «blind search» in the space of parameters revealed multiple physically reasonable solutions. The solutions were obtained using high–performance computational modeling based on BOINC–grid.
-
Нейросетевой анализ транспортных потоков городских агломераций на основе данных публичных камер видеообзора
Компьютерные исследования и моделирование, 2021, т. 13, № 2, с. 305-318Адекватное моделирование сложной динамики городских транспортных потоков требует сбора больших объемов данных для определения характера соответствующих моделей и их калибровки. Вместе с тем оборудование специализированных постов наблюдения является весьма затратным мероприятием и не всегда технически возможно. Совокупность этих факторов приводит к недостаточному фактографическому обеспечению как систем оперативного управления транспортными потоками, так и специалистов по транспортному планированию с очевидными последствиями для качества принимаемых решений. В качестве способа обеспечить массовый сбор данных хотя бы для качественного анализа ситуаций достаточно давно применяется обзорные видеокамеры, транслирующие изображения в определенные ситуационные центры, где соответствующие операторы осуществляют контроль и управление процессами. Достаточно много таких обзорных камер предоставляют данные своих наблюдений в общий доступ, что делает их ценным ресурсом для транспортных исследований. Вместе с тем получение количественных данных с таких камер сталкивается с существенными проблемами, относящимися к теории и практике обработки видеоизображений, чему и посвящена данная работа. В работе исследуется практическое применение некоторых мейнстримовских нейросетевых технологий для определения основных характеристик реальных транспортных потоков, наблюдаемых камерами общего доступа, классифицируются возникающие при этом проблемы и предлагаются их решения. Для отслеживания объектов дорожного движения применяются варианты сверточных нейронных сетей, исследуются способы их применения для определения базовых характеристик транспортных потоков. Простые варианты нейронной сети используются для автоматизации при получении обучающих примеров для более глубокой нейронной сети YOLOv4. Сеть YOLOv4 использована для оценки характеристик движения (скорость, плотность потока) для различных направлений с записей камер видеонаблюдения.
Ключевые слова: искусственные нейронные сети, машинное зрение, машинное обучение, сопровождение объекта, сверточные нейронные сети.
Neural network analysis of transportation flows of urban aglomeration using the data from public video cameras
Computer Research and Modeling, 2021, v. 13, no. 2, pp. 305-318Correct modeling of complex dynamics of urban transportation flows requires the collection of large volumes of empirical data to specify types of the modes and their identification. At the same time, setting a large number of observation posts is expensive and technically not always feasible. All this results in insufficient factographic support for the traffic control systems as well as for urban planners with the obvious consequences for the quality of their decisions. As one of the means to provide large-scale data collection at least for the qualitative situation analysis, the wide-area video cameras are used in different situation centers. There they are analyzed by human operators who are responsible for observation and control. Some video cameras provided their videos for common access, which makes them a valuable resource for transportation studies. However, there are significant problems with getting qualitative data from such cameras, which relate to the theory and practice of image processing. This study is devoted to the practical application of certain mainstream neuro-networking technologies for the estimation of essential characteristics of actual transportation flows. The problems arising in processing these data are analyzed, and their solutions are suggested. The convolution neural networks are used for tracking, and the methods for obtaining basic parameters of transportation flows from these observations are studied. The simplified neural networks are used for the preparation of training sets for the deep learning neural network YOLOv4 which is later used for the estimation of speed and density of automobile flows.
-
Параметрическая идентификация динамических систем на основе внешних интервальных оценок фазовых переменных
Компьютерные исследования и моделирование, 2024, т. 16, № 2, с. 299-314Важную роль при построении математических моделей динамических систем играют обратные задачи, к которым, в частности, относится задача параметрической идентификации. В отличие от классических моделей, оперирующих точечными значениями, интервальные модели дают ограничения сверху и снизу на исследуемые величины. В работе рассматривается интерполяционный подход к решению интервальных задач параметрической идентификации динамических систем для случая, когда экспериментальные данные представлены внешними интервальными оценками. Цель предлагаемого подхода заключается в нахождении такой интервальной оценки параметров модели, при которой внешняя интервальная оценка решения прямой задачи моделирования содержала бы экспериментальные данные или минимизировала бы отклонение от них. В основе подхода лежит алгоритм адаптивной интерполяции для моделирования динамических систем с интервальными неопределенностями, позволяющий в явном виде получать зависимость фазовых переменных от параметров системы. Сформулирована задача минимизации расстояния между экспериментальными данными и модельным решением в пространстве границ интервальных оценок параметров модели. Получено выражение для градиента целевой функции. На репрезентативном наборе задач продемонстрированы эффективность и работоспособность предлагаемого подхода.
Ключевые слова: обратные задачи, параметрическая идентификация, интервальные оценки, интервальные параметры, динамические системы, обыкновенные дифференциальные уравнения, алгоритм адаптивной интерполяции, градиентный спуск.
Parametric identification of dynamic systems based on external interval estimates of phase variables
Computer Research and Modeling, 2024, v. 16, no. 2, pp. 299-314An important role in the construction of mathematical models of dynamic systems is played by inverse problems, which in particular include the problem of parametric identification. Unlike classical models that operate with point values, interval models give upper and lower boundaries on the quantities under study. The paper considers an interpolation approach to solving interval problems of parametric identification of dynamic systems for the case when experimental data are represented by external interval estimates. The purpose of the proposed approach is to find such an interval estimate of the model parameters, in which the external interval estimate of the solution of the direct modeling problem would contain experimental data or minimize the deviation from them. The approach is based on the adaptive interpolation algorithm for modeling dynamic systems with interval uncertainties, which makes it possible to explicitly obtain the dependence of phase variables on system parameters. The task of minimizing the distance between the experimental data and the model solution in the space of interval boundaries of the model parameters is formulated. An expression for the gradient of the objectivet function is obtained. On a representative set of tasks, the effectiveness of the proposed approach is demonstrated.
-
Метод формирования тестовых сигналов для корреляционной идентификации нелинейных систем
Компьютерные исследования и моделирование, 2012, т. 4, № 4, с. 721-733Разработан и протестирован новый метод формирования тестовых сигналов для корреляционной идентификации нелинейных динамических систем методом Ли–Шетцена. Для коррекции моментных функций тестовых сигналов применен численный алгоритм оптимизации Гаусса–Ньютона. В экспериментах получены тестовые воздействия длиной до 40 000 точек, позволяющие определять ядра Винера 2-го порядка с линейным разрешением до 32 точек, ядра Винера 3-го порядка с линейным разрешением до 12 точек, ядра Винера 4-го порядка с линейным разрешением до 8 точек.
Ключевые слова: нелинейные динамические системы, подход Винера–Вольтерра, корреляционные методы идентификации, метод Ли–Шетцена, тестовые сигналы, белый шум.
Test-signals forming method for correlation identification of nonlinear systems
Computer Research and Modeling, 2012, v. 4, no. 4, pp. 721-733Просмотров за год: 1. Цитирований: 3 (РИНЦ).Тhe new test-signals forming method for correlation identification of a nonlinear system based on Lee–Shetzen cross-correlation approach is developed and tested. Numerical Gauss–Newton algorithm is applied to correct autocorrelation functions of test signals. The achieved test-signals have length less than 40 000 points and allow to measure the 2nd order Wiener kernels with a linear resolution up to 32 points, the 3rd order Wiener kernels with a linear resolution up to 12 points and the 4th order Wiener kernels with a linear resolution up to 8 points.
-
Идентификация управляемого объекта по частотным характеристикам, полученным экспериментально на нейросетевой динамической модели системы управления
Компьютерные исследования и моделирование, 2017, т. 9, № 5, с. 729-740Приведены результаты исследований по идентификации каналов управляемого объекта, основанные на постобработке измерений с созданием модели многовходового управляемого объекта и последующем активном вычислительном эксперименте. Построение модели управляемого объекта осуществляется путем аппроксимации его поведения нейросетевой моделью по трендам, полученным в ходе пассивного эксперимента в режиме нормальной эксплуатации. Рекуррентная нейронная сеть, имеющая в своем составе элементы в виде обратных связей, позволяет моделировать поведение динамических объектов. Временны́е задержки входных сигналов и сигналов обратных связей позволяют моделировать поведение инерционных объектов с чистым запаздыванием. Обученная на примерах функционирования объекта с системой управления модель представлена динамической нейронной сетью и моделью регулятора с известной функцией регулирования. Нейросетевая модель эмулирует поведение системы и используется для проведения на ней опытов активного вычислительного эксперимента. Нейросетевая модель позволяет получить отклик управляемого объекта на испытательное воздействие, в том числе и на периодическое. По полученной комплексной частотной характеристике с применением метода наименьших квадратов находят значения параметров передаточной функции каналов объекта. Представлен пример идентификации канала имитационной системы управления. Имитационный объект имеет два входа и один выход и обладает различным транспортным запаздыванием по каналам передачи. Один из входов является управляющим воздействием, второй является контролируемым возмущением. Выходная управляемая величина изменяется в результате управляющего воздействия, вырабатываемого регулятором, работающим по пропорционально-интегральному закону регулирования, на основании отклонения управляемой величины от задания. Найденные параметры передаточных функций каналов имитационного объекта близки к значениям параметров исходного имитационного объекта. Приведенная ошибка реакции на единичное ступенчатое воздействие модели системы управления, построенной по результатам идентификации имитационной системы управления, не превышает 0.08. Рассматриваемые объекты относятся к классу технологических процессов с непрерывным характером производства. Подобные объекты характерны для химической, металлургической, горно-обогатительной, целлюлозно-бумажной и ряда других отраслей промышленности.
Ключевые слова: объект с системой управления, идентификация, нейронная сеть, моделирование, комплексная частотная характеристика, передаточная функция.
Identification of a controlled object using frequency responses obtained from a dynamic neural network model of a control system
Computer Research and Modeling, 2017, v. 9, no. 5, pp. 729-740Просмотров за год: 10.We present results of a study aimed at identification of a controlled object’s channels based on postprocessing of measurements with development of a model of a multiple-input controlled object and subsequent active modelling experiment. The controlled object model is developed using approximation of its behavior by a neural network model using trends obtained during a passive experiment in the mode of normal operation. Recurrent neural network containing feedback elements allows to simulate behavior of dynamic objects; input and feedback time delays allow to simulate behavior of inertial objects with pure delay. The model was taught using examples of the object’s operation with a control system and is presented by a dynamic neural network and a model of a regulator with a known regulation function. The neural network model simulates the system’s behavior and is used to conduct active computing experiments. Neural network model allows to obtain the controlled object’s response to an exploratory stimulus, including a periodic one. The obtained complex frequency response is used to evaluate parameters of the object’s transfer system using the least squares method. We present an example of identification of a channel of the simulated control system. The simulated object has two input ports and one output port and varying transport delays in transfer channels. One of the input ports serves as a controlling stimulus, the second is a controlled perturbation. The controlled output value changes as a result of control stimulus produced by the regulator operating according to the proportional-integral regulation law based on deviation of the controlled value from the task. The obtained parameters of the object’s channels’ transfer functions are close to the parameters of the input simulated object. The obtained normalized error of the reaction for a single step-wise stimulus of the control system model developed based on identification of the simulated control system doesn’t exceed 0.08. The considered objects pertain to the class of technological processes with continuous production. Such objects are characteristic of chemical, metallurgic, mine-mill, pulp and paper, and other industries.
-
Исследование свойств материала пластины лазерным ультразвуком при помощи анализа кратных волн
Компьютерные исследования и моделирование, 2019, т. 11, № 4, с. 653-673Ультразвуковое исследование свойств материалов является прецизионным методом определения их упругих и прочностных свойств в связи с маленькой по сравнению с толщиной пластины длиной волны, образующейся в материале после воздействия лазерным пучком. В данной работе подробно рассмотрены волновые процессы, возникающие в ходе проведения этих измерений. Показано, что полноволновое численное моделирование позволяет детально изучать типы волн, геометрические характеристики их профиля, скорость прихода волн в различные точки, выявлять типы волн, измерения по которым оптимальны для исследований образца с заданными материалом и формой, разрабатывать методики измерений.
Для осуществления полноволнового моделирования в данной работе был применен сеточно-характеристический метод на структурированных сетках и решалась гиперболическая система уравнений, описывающая распространение упругих волн в материале рассматриваемой пластины конечной толщины на конкретном примере отношения толщины к ширине 1:10.
Для моделирования упругого фронта, возникшего в пластине от воздействия лазерного пучка, предложена соответствующая постановка задачи. Выполнено сравнение возникающих при ее использовании волновых эффектов со случаем точечного источника и с данными физических экспериментов о распространении лазерного ультразвука в металлических пластинах.
Проведено исследование, на основании которого были выявлены характерные геометрические особенности рассматриваемых волновых процессов. Исследованы основные типы упругих волн, возникающие в процессе воздействия лазерного пучка, проанализирована возможность их использования для исследования свойств материалов и предложен метод, основанный на анализе кратных волн. Проведено тестирование предложенного метода по изучению свойств пластины при помощи кратных волн на синтетических данных, показавшее хорошие результаты.
Следует отметить, что большая часть исследований кратных волн направлена на разработку методов их подавления. Кратные волны не используются для обработки результатов ультразвуковых исследований в связи со сложностью их выявления в регистрируемых данных физического эксперимента.
За счет применения полноволнового моделирования и анализа пространственных динамических волновых процессов в данной работе кратные волны рассмотрены подробно и предложено деление материалов на три класса, позволяющее использовать кратные волны для получения информации о материале пластины.
Основными результатами работы являются разработанные постановки задачи для численного моделирования исследования пластин конечной толщины лазерным ультразвуком; выявленные особенности волновых явлений, возникающих в пластинах конечной толщины; разработанная методика исследования свойств пластины на основе кратных волн; разработанная классификация материалов.
Результаты исследований, приведенные в настоящей работе, могут быть интересны для разработок не только в области ультразвуковых исследований материалов, но и в области сейсмической разведки земных недр, так как предложенный подход может быть расширен на более сложные случаи гетерогенных сред и применен в геофизике.
Ключевые слова: исследование свойств материалов, пластины, лазерный ультразвук, математическое моделирование, численные методы, компьютерное моделирование, сеточно-характеристический метод, кратные волны.
Investigation the material properties of a plate by laser ultrasound using the analysis of multiple waves
Computer Research and Modeling, 2019, v. 11, no. 4, pp. 653-673Просмотров за год: 3.Ultrasound examination of material properties is a precision method for determining their elastic and strength properties in connection with the small wavelength formed in the material after impact of a laser beam. In this paper, the wave processes arising during these measurements are considered in detail. It is shown that full-wave numerical modeling allows us to study in detail the types of waves, topological characteristics of their profile, speed of arrival of waves at various points, identification the types of waves whose measurements are most optimal for examining a sample made of a specific material of a particular shape, and to develop measurement procedures.
To carry out full-wave modeling, a grid-characteristic method on structured grids was used in this work and a hyperbolic system of equations that describes the propagation of elastic waves in the material of the thin plate under consideration on a specific example of a ratio of thickness to width of 1:10 was solved.
To simulate an elastic front that arose in the plate due to a laser beam, a model of the corresponding initial conditions was proposed. A comparison of the wave effects that arise during its use in the case of a point source and with the data of physical experiments on the propagation of laser ultrasound in metal plates was made.
A study was made on the basis of which the characteristic topological features of the wave processes under consideration were identified and revealed. The main types of elastic waves arising due to a laser beam are investigated, the possibility of their use for studying the properties of materials is analyzed. A method based on the analysis of multiple waves is proposed. The proposed method for studying the properties of a plate with the help of multiple waves on synthetic data was tested, and it showed good results.
It should be noted that most of the studies of multiple waves are aimed at developing methods for their suppression. Multiple waves are not used to process the results of ultrasound studies due to the complexity of their detection in the recorded data of a physical experiment.
Due to the use of full wave modeling and analysis of spatial dynamic wave processes, multiple waves are considered in detail in this work and it is proposed to divide materials into three classes, which allows using multiple waves to obtain information about the material of the plate.
The main results of the work are the developed problem statements for the numerical simulation of the study of plates of a finite thickness by laser ultrasound; the revealed features of the wave phenomena arising in plates of a finite thickness; the developed method for studying the properties of the plate on the basis of multiple waves; the developed classification of materials.
The results of the studies presented in this paper may be of interest not only for developments in the field of ultrasonic non-destructive testing, but also in the field of seismic exploration of the earth's interior, since the proposed approach can be extended to more complex cases of heterogeneous media and applied in geophysics.
-
Алгоритм идентификации вихрей по векторам скорости течения на основе простейшей математической модели вихревой динамики
Компьютерные исследования и моделирование, 2023, т. 15, № 6, с. 1477-1493Предложен алгоритм идентификации параметров плоской вихревой структуры по информации о скорости теченияв конечном (малом) наборе опорных точек. Алгоритм основан на использовании модельной системы точечных вихрей и минимизации в пространстве ее параметров целевого функционала, оценивающего близость модельного и известного наборов векторов скорости. Для численной реализации используются модифицированный метод градиентного спуска с управлением шагом, аппроксимации производных конечными разностями, аналитическое выражение для поля скорости, индуцируемое модельной системой. Проведен численный экспериментальный анализ работы алгоритма на тестовых течениях: одного и системы нескольких точечных вихрей, вихря Рэнкина и диполя Ламба. Используемые дляид ентификации векторы скорости задавались в случайно распределенных наборах опорных точек (от 3 до 200) согласно известным аналитическим выражениям для тестовых полей скорости. В результате вычислений показано: алгоритм сходится к искомому минимуму из широкой области начальных приближений; алгоритм сходится во всех случаях когда опорные точки лежат в областях, где линии тока тестовой и модельной систем топологически эквивалентны; если системы топологически не эквивалентны, то доля удачных расчетов снижается, но сходимость алгоритма также может иметь место; координаты найденных в результате сходимости алгоритма вихрей модельной системы близки к центрам вихрей тестовых конфигураций, а во многих случаях и значения их интенсивностей; сходимость алгоритма в большей степени зависит от расположения, чем от количества используемых при идентификации векторов. Результаты исследования позволяют рекомендовать предложенный алгоритм для анализа плоских вихревых структур, у которых линии тока топологически близки траекториям частиц в поле скорости систем точечных вихрей.
Ключевые слова: вихревые структуры, алгоритм идентификации, системы точечных вихрей, метод градиентного спуска.
Algorithm for vortices identification based on flow velocity vectors using the simplest mathematical model of vortex dynamics
Computer Research and Modeling, 2023, v. 15, no. 6, pp. 1477-1493An algorithm is proposed to identify parameters of a 2D vortex structure used on information about the flow velocity at a finite (small) set of reference points. The approach is based on using a set of point vortices as a model system and minimizing a functional that compares the model and known sets of velocity vectors in the space of model parameters. For numerical implementation, the method of gradient descent with step size control, approximation of derivatives by finite differences, and the analytical expression of the velocity field induced by the point vortex model are used. An experimental analysis of the operation of the algorithm on test flows is carried out: one and a system of several point vortices, a Rankine vortex, and a Lamb dipole. According to the velocity fields of test flows, the velocity vectors utilized for identification were arranged in a randomly distributed set of reference points (from 3 to 200 pieces). Using the computations, it was determined that: the algorithm converges to the minimum from a wide range of initial approximations; the algorithm converges in all cases when the reference points are located in areas where the streamlines of the test and model systems are topologically equivalent; if the streamlines of the systems are not topologically equivalent, then the percentage of successful calculations decreases, but convergence can also take place; when the method converges, the coordinates of the vortices of the model system are close to the centers of the vortices of the test configurations, and in many cases, the values of their circulations also; con-vergence depends more on location than on the number of vectors used for identification. The results of the study allow us to recommend the proposed algorithm for identifying 2D vortex structures whose streamlines are topologically close to systems of point vortices.
-
Теоретико-игровая модель согласования интересов при инновационном развитии корпорации
Компьютерные исследования и моделирование, 2016, т. 8, № 4, с. 673-684Исследуются динамические теоретико-игровые модели инновационного развития корпорации. Предлагаемые модели основаны на согласовании частных и общественных интересов агентов. Предполагается, что структура интересов каждого агента включает как частную (личные интересы), так и общественную (интересы компании в целом, в первую очередь отражающие необходимость ее инновационного развития) составляющие. Агенты могут делить персональные ресурсы между этими направлениями. Динамика системы описывается не дифференциальным, а разностным уравнением. При исследовании предложенной модели инновационного развития используются имитация и метод перебора областей допустимых управлений субъектов с некоторым шагом. Основной вклад работы — сравнительный анализ эффективности методов иерархического управления для информационных регламентов Штакельберга/Гермейера при принуждении/побуждении (четыре регламента) с помощью индексов системной согласованности. Предлагаемая модель носит универсальный характер и может быть использована для научно обоснованной поддержки ПИР компаний всех отраслей экономики. Специфика конкретной компании учитывается в ходе идентификации модели (определения конкретных классов ис- пользуемых в модели функций и числовых значений параметров), которая представляет собой отдельную сложную задачу и предполагает анализ системы официальной отчетности компании и применение экспертных оценок ее специалистов. Приняты следующие предположения относительно информационного регламента иерархической игры: все игроки используют программные стратегии; ведущий выбирает и сообщает ведомым экономические управления либо административные управления, которые могут быть только функциями времени (игры Штакельберга) либо зависеть также от управлений ведомых (игры Гермейера); при известных стратегиях ведущего ведомые одновременно и независимо выбирают свои стратегии, что приводит к равновесию Нэша в игре ведомых. За конечное число итераций предложенный алгоритм имитационного моделирования позволяет построить приближенное решение модели или сделать вывод, что равновесия не существует. Достоверность и эффективность предложенного алгоритма следуют из свойств методов сценариев и прямого упорядоченного перебора с постоянным шагом. Получен ряд содержательных выводов относительно сравнительной эффективности методов иерархического управления инновациями.
Ключевые слова: игра Гермейера, игра Штакельберга, иерархия, имитационное моделирование, инновационное развитие, побуждение, принуждение.
Game-theoretic model of coordinations of interests at innovative development of corporations
Computer Research and Modeling, 2016, v. 8, no. 4, pp. 673-684Просмотров за год: 9. Цитирований: 6 (РИНЦ).Dynamic game theoretic models of the corporative innovative development are investigated. The proposed models are based on concordance of private and public interests of agents. It is supposed that the structure of interests of each agent includes both private (personal interests) and public (interests of the whole company connected with its innovative development first) components. The agents allocate their personal resources between these two directions. The system dynamics is described by a difference (not differential) equation. The proposed model of innovative development is studied by simulation and the method of enumeration of the domains of feasible controls with a constant step. The main contribution of the paper consists in comparative analysis of efficiency of the methods of hierarchical control (compulsion or impulsion) for information structures of Stackelberg or Germeier (four structures) by means of the indices of system compatibility. The proposed model is a universal one and can be used for a scientifically grounded support of the programs of innovative development of any economic firm. The features of a specific company are considered in the process of model identification (a determination of the specific classes of model functions and numerical values of its parameters) which forms a separate complex problem and requires an analysis of the statistical data and expert estimations. The following assumptions about information rules of the hierarchical game are accepted: all players use open-loop strategies; the leader chooses and reports to the followers some values of administrative (compulsion) or economic (impulsion) control variables which can be only functions of time (Stackelberg games) or depend also on the followers’ controls (Germeier games); given the leader’s strategies all followers simultaneously and independently choose their strategies that gives a Nash equilibrium in the followers’ game. For a finite number of iterations the proposed algorithm of simulation modeling allows to build an approximate solution of the model or to conclude that it doesn’t exist. A reliability and efficiency of the proposed algorithm follow from the properties of the scenario method and the method of a direct ordered enumeration with a constant step. Some comprehensive conclusions about the comparative efficiency of methods of hierarchical control of innovations are received.
Журнал индексируется в Scopus
Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"