Текущий выпуск Номер 2, 2025 Том 17

Все выпуски

Результаты поиска по 'reaction – diffusion type systems':
Найдено статей: 6
  1. Борина М.Ю., Полежаев А.А.
    Диффузионная неустойчивость в трехкомпонентной модели типа «реакция–диффузия»
    Компьютерные исследования и моделирование, 2011, т. 3, № 2, с. 135-146

    В данной работе проведено исследование возникновения диффузионной неустойчивости в системе из трех уравнений типа «реакция–диффузия». В общем виде получены условия как тьюринговской, так и волновой неустойчивостей. Выявлены качественные свойства, которыми должна обладать система для того, чтобы в ней могла произойти та или другая бифуркация. В численных экспериментах показано, что при выполнении соответствующих условий в нелинейной модели возникают структуры, которые предсказываются линейным анализом.

    Borina M.Y., Polezhaev A.A.
    Diffusion instability in a threevariable reactiondiffusion model
    Computer Research and Modeling, 2011, v. 3, no. 2, pp. 135-146

    Investigation of occurrence of diffusion instability in a set of three reactiondiffusion equations is carried out. In the general case the condition for both Turing and wave instabilities are obtained. Qualitative properties of the system, in which the bifurcation of each of the two types can take place, are clarified. In numerical experiments it is shown that if the corresponding conditions are met in the nonlinear model, spatiotemporal patterns are formed, which are predicted by linear analysis.

    Просмотров за год: 1. Цитирований: 7 (РИНЦ).
  2. Курушина С.Е., Шаповалова Е.А.
    Рождение и развитие беспорядка внутри упорядоченного состояния в пространственно распределенной модели химической реакции
    Компьютерные исследования и моделирование, 2017, т. 9, № 4, с. 595-607

    В работе изложены основные моменты приближения среднего поля в применении к многокомпонентным стохастическим реакционно-диффузионным системам.

    Представлена изучаемая модель химической реакции — брюсселятор. Записаны кинетические уравнения реакции, учитывающие диффузию промежуточных компонент и флуктуации концентраций исходных веществ. Флуктуации моделируются как случайные гауссовы однородные и изотропные в пространстве поля, с нулевым средним и пространственной корреляционной функцией, имеющей нетривиальную структуру. В работе рассматриваются значения параметров модели, соответствующие пространственно неоднородному упорядоченному состоянию в детерминированном случае.

    В работе получено одноточечное двумерное нелинейное самосогласованное уравнение Фоккера–Планка в интерпретации Стратоновича в приближении среднего поля для пространственно распределенного стохастического брюсселятора, которое описывает динамику плотности распределения вероятностей значений концентраций компонент рассматриваемой системы. Найдены значения интенсивности внешнего шума, соответствующие двум типам решений уравнения Фоккера–Планка: решению с времен- ной бимодальностью и решению с многократным чередованием одно- и бимодального видов плотности вероятностей. Проведено численное исследование динамики плотности распределения вероятностей и изучено поведение во времени дисперсий, математических ожиданий и наиболее вероятных значений концентраций компонент при различных значениях интенсивности шума и бифуркационного параметра в указанных областях параметров задачи.

    Показано, что, начиная с некоторого значения интенсивности внешнего шума, внутри упорядоченной фазы зарождается беспорядок, существующий конечное время, причем чем больше шум, тем больше его время жизни. Чем дальше от точки бифуркации, тем меньше шум, который его порождает, и тем уже область значений интенсивности шума, при которых система эволюционирует к упорядоченному, но уже новому статистически стационарному состоянию. При некотором втором значении интенсивности шума возникает перемежаемость упорядоченной и разупорядоченной фаз. Увеличение интенсивности шума приводит к тому, что частота перемежаемости увеличивается.

    Таким образом, показано, что сценарием шумоиндуцированного перехода «порядок–беспорядок» в изучаемой системе является перемежаемость упорядоченной и разупорядоченной фаз.

    Kurushina S.E., Shapovalova E.A.
    Origin and growth of the disorder within an ordered state of the spatially extended chemical reaction model
    Computer Research and Modeling, 2017, v. 9, no. 4, pp. 595-607

    We now review the main points of mean-field approximation (MFA) in its application to multicomponent stochastic reaction-diffusion systems.

    We present the chemical reaction model under study — brusselator. We write the kinetic equations of reaction supplementing them with terms that describe the diffusion of the intermediate components and the fluctuations of the concentrations of the initial products. We simulate the fluctuations as random Gaussian homogeneous and spatially isotropic fields with zero means and spatial correlation functions with a non-trivial structure. The model parameter values correspond to a spatially-inhomogeneous ordered state in the deterministic case.

    In the MFA we derive single-site two-dimensional nonlinear self-consistent Fokker–Planck equation in the Stratonovich's interpretation for spatially extended stochastic brusselator, which describes the dynamics of probability distribution density of component concentration values of the system under consideration. We find the noise intensity values appropriate to two types of Fokker–Planck equation solutions: solution with transient bimodality and solution with the multiple alternation of unimodal and bimodal types of probability density. We study numerically the probability density dynamics and time behavior of variances, expectations, and most probable values of component concentrations at various noise intensity values and the bifurcation parameter in the specified region of the problem parameters.

    Beginning from some value of external noise intensity inside the ordered phase disorder originates existing for a finite time, and the higher the noise level, the longer this disorder “embryo” lives. The farther away from the bifurcation point, the lower the noise that generates it and the narrower the range of noise intensity values at which the system evolves to the ordered, but already a new statistically steady state. At some second noise intensity value the intermittency of the ordered and disordered phases occurs. The increasing noise intensity leads to the fact that the order and disorder alternate increasingly.

    Thus, the scenario of the noise induced order–disorder transition in the system under study consists in the intermittency of the ordered and disordered phases.

    Просмотров за год: 7.
  3. Ха Д.Т., Цибулин В.Г.
    Уравнения диффузии–реакции–адвекции для системы «хищник–жертва» в гетерогенной среде
    Компьютерные исследования и моделирование, 2021, т. 13, № 6, с. 1161-1176

    Анализируются варианты учета неоднородности среды при компьютерном моделировании динамики хищника и жертвы на основе системы уравнений реакции–диффузии–адвекции. Локальное взаимодействие видов (члены реакции) описывается логистическим законом роста для жертвы и соотношениями Беддингтона – ДеАнгелиса, частными случаями которых являются функциональный отклик Холлинга второго рода и модель Ардити – Гинзбурга. Рассматривается одномерная по пространству задача для неоднородного ресурса (емкости среды) и трех видов таксиса (жертвы на ресурс и от хищника, хищника к жертве). Используется аналитический подход для исследования устойчивости стационарных решений в случае локального взаимодействия (бездиффузионный подход) и вычисления на основе метода прямых для учета диффузионных и адвективных процессов. Сравнение критических значений параметра смертности хищников показало, что при постоянных коэффициентах в соотношениях Беддингтона – ДеАнгелиса получаются переменные по пространственной координате критические величины, а для модели Ардити – Гинзбурга данный эффект не наблюдается. Предложена модификация членов реакции, позволяющая учесть неоднородность ресурса. Представлены численные результаты по динамике видов для больших и малых миграционных коэффициентов, демонстрирующие снижение влияния вида локальных членов на формирующиеся пространственно-временные распределения популяций. Проанализированы бифуркационные переходы при изменении параметров диффузии–адвекции и членов реакции.

    Ha D.T., Tsybulin V.G.
    Diffusionreaction–advection equations for the predator–prey system in a heterogeneous environment
    Computer Research and Modeling, 2021, v. 13, no. 6, pp. 1161-1176

    We analyze variants of considering the inhomogeneity of the environment in computer modeling of the dynamics of a predator and prey based on a system of reaction-diffusion–advection equations. The local interaction of species (reaction terms) is described by the logistic law for the prey and the Beddington –DeAngelis functional response, special cases of which are the Holling type II functional response and the Arditi – Ginzburg model. We consider a one-dimensional problem in space for a heterogeneous resource (carrying capacity) and three types of taxis (the prey to resource and from the predator, the predator to the prey). An analytical approach is used to study the stability of stationary solutions in the case of local interaction (diffusionless approach). We employ the method of lines to study diffusion and advective processes. A comparison of the critical values of the mortality parameter of predators is given. Analysis showed that at constant coefficients in the Beddington –DeAngelis model, critical values are variable along the spatial coordinate, while we do not observe this effect for the Arditi –Ginzburg model. We propose a modification of the reaction terms, which makes it possible to take into account the heterogeneity of the resource. Numerical results on the dynamics of species for large and small migration coefficients are presented, demonstrating a decrease in the influence of the species of local members on the emerging spatio-temporal distributions of populations. Bifurcation transitions are analyzed when changing the parameters of diffusion–advection and reaction terms.

  4. Курушина С.Е., Федорова Е.А., Гуровская Ю.А.
    Методика анализа шумоиндуцированных явлений в двухкомпонентных стохастических системах реакционно-диффузионного типа со степенной нелинейностью
    Компьютерные исследования и моделирование, 2025, т. 17, № 2, с. 277-291

    В работе построена и исследуется обобщенная модель, описывающая двухкомпонентные системы реакционно-диффузионного типа со степенной нелинейностью и учитывающая влияние внешних шумов. Для анализа обобщенной модели разработана методология, включающая в себя линейный анализ устойчивости, нелинейный анализ устойчивости и численное моделирование эволюции системы. Методика проведения линейного анализа опирается на базовые подходы, в которых для получения характеристического уравнения используется матрица линеаризации. Нелинейный анализ устойчивости проводится с точностью до моментов третьего порядка включительно. Для этого функции, описывающие динамику компонент, раскладываются в ряд Тейлора до слагаемых третьего порядка. Затем с помощью теоремы Новикова проводится процедура усреднения. В результате полученные уравнения образуют бесконечную иерархично подчиненную структуру, которую в определенный момент необходимо прервать. Для этого пренебрегаем вкладом слагаемых выше третьего порядка как в самих уравнениях, так и при построении уравнений моментов. Полученные уравнения образуют набор линейных уравнений, из которых формируется матрица устойчивости. Эта матрица имеет довольно сложную структуру, в связи с чем ее решение может быть получено только численно. Для проведения численного исследования эволюции системы выбран метод переменных направлений. Из-за наличия в анализируемой системе стохастической части метод был модифицирован таким образом, что на целых слоях проводится генерация случайных полей с заданным распределением и функцией корреляции, отвечающих за шумовой вклад в общую нелинейность. Апробация разработанной методологии проведена на предложенной Barrio et al. модели реакции – диффузии, по результатам исследования которой им показана схожесть получаемых структур с пигментацией рыб. В настоящей работе внимание сосредоточено на анализе поведения системы в окрестности ненулевой стационарной точки. Изучена зависимость действительной части собственных значений от волнового числа. В линейном анализе получена область значений волновых чисел, при которых возникает неустойчивость Тьюринга. Нелинейный анализ и численное моделирование эволюции системы проводятся для параметров модели, которые, напротив, находятся вне области неустойчивости Тьюринга. В рамках нелинейного анализа найдены интенсивности аддитивного шума, при которых, несмотря на отсутствие условий для возникновения диффузионной неустойчивости, система переходит в неустойчивое состояние. Результаты численного моделирования эволюции апробируемой модели демонстрируют процесс образования пространственных структур тьюрингового типа при воздействии на нее аддитивного шума.

    Kurushina S.E., Fedorova E.A., Gurovskaia I.A.
    Technique for analyzing noise-induced phenomena in two-component stochastic systems of reactiondiffusion type with power nonlinearity
    Computer Research and Modeling, 2025, v. 17, no. 2, pp. 277-291

    The paper constructs and studies a generalized model describing two-component systems of reactiondiffusion type with power nonlinearity, considering the influence of external noise. A methodology has been developed for analyzing the generalized model, which includes linear stability analysis, nonlinear stability analysis, and numerical simulation of the system’s evolution. The linear analysis technique uses basic approaches, in which the characteristic equation is obtained using a linearization matrix. Nonlinear stability analysis realized up to third-order moments inclusively. For this, the functions describing the dynamics of the components are expanded in Taylor series up to third-order terms. Then, using the Novikov theorem, the averaging procedure is carried out. As a result, the obtained equations form an infinite hierarchically subordinate structure, which must be truncated at some point. To achieve this, contributions from terms higher than the third order are neglected in both the equations themselves and during the construction of the moment equations. The resulting equations form a set of linear equations, from which the stability matrix is constructed. This matrix has a rather complex structure, making it solvable only numerically. For the numerical study of the system’s evolution, the method of variable directions was chosen. Due to the presence of a stochastic component in the analyzed system, the method was modified such that random fields with a specified distribution and correlation function, responsible for the noise contribution to the overall nonlinearity, are generated across entire layers. The developed methodology was tested on the reactiondiffusion model proposed by Barrio et al., according to the results of the study, they showed the similarity of the obtained structures with the pigmentation of fish. This paper focuses on the system behavior analysis in the neighborhood of a non-zero stationary point. The dependence of the real part of the eigenvalues on the wavenumber has been examined. In the linear analysis, a range of wavenumber values is identified in which Turing instability occurs. Nonlinear analysis and numerical simulation of the system’s evolution are conducted for model parameters that, in contrast, lie outside the Turing instability region. Nonlinear analysis found noise intensities of additive noise for which, despite the absence of conditions for the emergence of diffusion instability, the system transitions to an unstable state. The results of the numerical simulation of the evolution of the tested model demonstrate the process of forming spatial structures of Turing type under the influence of additive noise.

  5. Галочкина Т.В., Вольперт В.А.
    Математическое моделирование распространения тромбина в процессе свертывания крови
    Компьютерные исследования и моделирование, 2017, т. 9, № 3, с. 469-486

    В случае повреждения сосуда или контакта плазмы крови с чужеродной поверхностью запускается цепь химических реакций (каскад свертывания), ведущая к формированию кровяного сгустка (тромба), основу которого составляют волокна фибрина. Ключевым компонентом каскада свертывания крови является фермент тромбин, катализирующий образование фибрина из фибриногена. Распределение концентрации тромбина определяет пространственно-временную динамику формирования кровяного сгустка. Контактный путь активации системы свертывания запускает реакцию образования тромбина в ответ на контакт с отрицательно заряженной поверхностью. Если концентрация тромбина, произведенного на этом этапе, достаточно велика, дальнейшее образование тромбина идет за счет положительных обратных связей каскада свертывания. В результате тромбин распространяется в плазме, что приводит к расщеплению фибриногена и формированию тромба. Профиль концентрации и скорость распространения тромбина в плазме постоянны и не зависят от того, как было активировано свертывание.

    Подобное поведение системы свертывания хорошо описывается решениями типа бегущей волны в системе уравнений «реакция – диффузия» на концентрации факторов крови, принимающих участие в каскаде свертывания. В настоящей работе проводится подробный анализма тематической модели, описывающей основные реакции каскада свертывания. Формулируются необходимые и достаточные условия существования решений системы типа бегущей волны. Для рассмотренной модели существование таких решений является эквивалентным существованию волновых решений упрощенной модели, полученной с помощью квазистационарного приближения и состоящей из одного уравнения, описывающего динамику концентрации тромбина.

    Упрощенная модель также позволяет нам получить аналитические оценки скорости распространения волны тромбина в рассматриваемых моделях. Скорость бегущей волны для одного уравнения была оценена с использованием метода узкой зоны реакции и с помощью кусочно-линейного приближения. Полученные формулы дают хорошее приближение скорости распространения волны тромбина как в упрощенной, так и в исходной модели.

    Galochkina T.V., Volpert V.A.
    Mathematical modeling of thrombin propagation during blood coagulation
    Computer Research and Modeling, 2017, v. 9, no. 3, pp. 469-486

    In case of vessel wall damage or contact of blood plasma with a foreign surface, the chain of chemical reactions called coagulation cascade is launched that leading to the formation of a fibrin clot. A key enzyme of the coagulation cascade is thrombin, which catalyzes formation of fibrin from fibrinogen. The distribution of thrombin concentration in blood plasma determines spatio-temporal dynamics of clot formation. Contact pathway of blood coagulation triggers the production of thrombin in response to the contact with a negatively charged surface. If the concentration of thrombin generated at this stage is large enough, further production of thrombin takes place due to positive feedback loops of the coagulation cascade. As a result, thrombin propagates in plasma cleaving fibrinogen that results in the clot formation. The concentration profile and the speed of propagation of thrombin are constant and do not depend on the type of the initial activator.

    Such behavior of the coagulation system is well described by the traveling wave solutions in a system of “reactiondiffusion” equations on the concentration of blood factors involved in the coagulation cascade. In this study, we carried out detailed analysis of the mathematical model describing the main reaction of the intrinsic pathway of coagulation cascade.We formulate necessary and sufficient conditions of the existence of the traveling wave solutions. For the considered model the existence of such solutions is equivalent to the existence of the wave solutions in the simplified one-equation model describing the dynamics of thrombin concentration derived under the quasi-stationary approximation.

    Simplified model also allows us to obtain analytical estimate of the thrombin propagation rate in the considered model. The speed of the traveling wave for one equation is estimated using the narrow reaction zone method and piecewise linear approximation. The resulting formulas give a good approximation of the velocity of propagation of thrombin in the simplified, as well as in the original model.

    Просмотров за год: 10. Цитирований: 1 (РИНЦ).
  6. Гиричева Е.Е.
    Анализ неустойчивости системы «хищник–жертва», вызванной таксисом, на примере модели сообщества планктона
    Компьютерные исследования и моделирование, 2020, т. 12, № 1, с. 185-199

    В работе представлена модель типа «хищник–жертва», описывающая пространственно-временную динамику планктонного сообщества с учетом биогенных элементов. Система описывается уравнениями типа «реакция–диффузия–адвекция» в одномерной области, соответствующей вертикальному столбу воды в поверхностном слое. Адвективный член уравнения хищника описывает вертикальные перемещения зоопланктона в направлении градиента фитопланктона. Исследование посвящено определению условий возникновения пространственно-неоднородных структур, генерируемых системой под воздействием этих перемещений (таксиса). В предположении равных коэффициентов диффузии всех компонент модели анализируется неустойчивость системы в окрестности гомогенного равновесия к малым пространственно-неоднородным возмущениям.

    В результате линейного анализа получены условия для возникновения неустойчивости Тьюринга и волновой неустойчивости. Определено, что соотношения между параметрами локальной кинетики системы определяют возможность потери устойчивости системой и тип неустойчивости. В качестве бифуркационного параметра в исследовании рассматривается скорость таксиса. Показано, что при малых значениях этого параметра система устойчива, а начиная с некоторого критического значения устойчивость может теряться, и система способна генерировать либо стационарные пространственно-неоднородные структуры, либо структуры, неоднородные и по времени, и по пространству. Полученные результаты согласуются с ранними исследованиями подобных двухкомпонентных моделей.

    В работе получен интересный результат, указывающий, что бесконечное увеличение скорости таксиса не будет существенно менять вид этих структур. Выявлено, что существует предел величины волнового числа, соответствующего самой неустойчивой моде. Это значение и определяет вид пространственной структуры. В подтверждение полученных результатов в работе приведены варианты пространственно-временной динамики компонент модели в случае неустойчивости Тьюринга и волновой неустойчивости.

    Giricheva E.E.
    Analysis of taxis-driven instability of a predator–prey system through the plankton community model
    Computer Research and Modeling, 2020, v. 12, no. 1, pp. 185-199

    The paper deals with a prey-predator model, which describes the spatiotemporal dynamics of plankton community and the nutrients. The system is described by reaction-diffusion-advection equations in a onedimensional vertical column of water in the surface layer. Advective term of the predator equation represents the vertical movements of zooplankton with velocity, which is assumed to be proportional to the gradient of phytoplankton density. This study aimed to determine the conditions under which these movements (taxis) lead to the spatially heterogeneous structures generated by the system. Assuming diffusion coefficients of all model components to be equal the instability of the system in the vicinity of stationary homogeneous state with respect to small inhomogeneous perturbations is analyzed.

    Necessary conditions for the flow-induced instability were obtained through linear stability analysis. Depending on the local kinetics parameters, increasing the taxis rate leads to Turing or wave instability. This fact is in good agreement with conditions for the emergence of spatial and spatiotemporal patterns in a minimal phytoplankton–zooplankton model after flow-induced instabilities derived by other authors. This mechanism of generating patchiness is more general than the Turing mechanism, which depends on strong conditions on the diffusion coefficients.

    While the taxis exceeding a certain critical value, the wave number corresponding to the fastest growing mode remains unchanged. This value determines the type of spatial structure. In support of obtained results, the paper presents the spatiotemporal dynamics of the model components demonstrating Turing-type pattern and standing wave pattern.

Журнал индексируется в Scopus

Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"

Международная Междисциплинарная Конференция МАТЕМАТИКА. КОМПЬЮТЕР. ОБРАЗОВАНИЕ.