Текущий выпуск Номер 3, 2025 Том 17

Все выпуски

Результаты поиска по 'optimization':
Найдено статей: 208
  1. Власов А.А., Пильгейкина И.А., Скорикова И.А.
    Методика формирования многопрограммного управления изолированным перекрестком
    Компьютерные исследования и моделирование, 2021, т. 13, № 2, с. 295-303

    Наиболее простым и востребованным практикой методом управления светофорной сигнализацией является предрассчитанное регулирование, когда параметры работы светофорного объекта рассчитываются заранее и затем активируются согласно расписанию. В работе предложена методика формирования сигнального плана, позволяющая рассчитать программы регулирования и установить период их активности. Подготовка исходных данных для проведения расчета включает формирование временного ряда суточной интенсивности движения с интервалом 15 минут. При проведении полевых обследований возможно отсутствие части измерений интенсивности движения. Для восполнения недостающих значений предложено использование кубической сплайн-интерполяции временного ряда. Следующем шагом методики является расчет суточного набора сигнальных планов. В работе приведены зависимости, позволяющие рассчитать оптимальную длительность цикла регулирования и разрешающих движение фаз и установить период их активности. Существующие системы управления движением имеют ограничения на количество используемых программ регулирования. Для сокращения количества сигнальных планов и определения периода их активности используется кластеризация методом $k$-средних в пространстве длительности транспортных фаз. В новом суточном сигнальном плане длительность фаз определяется координатами полученных центров кластеров, а периоды активности устанавливаются элементами, вошедшими в кластер. Апробация на числовом примере показала, что при количестве кластеров 10 отклонение оптимальной длительности фаз от центров кластеров не превышает 2 с. Для проведения оценки эффективности разработанной методики на примере реального пересечения со светофорным регулированием. На основе натурных обследований схемы движения и транспортного спроса разработана микроскопическая модель для программы SUMO (Simulation of Urban Mobility). Оценка эффективности произведена на основе потерь транспорта, оцениваемых затратами времени на передвижение. Имитационное моделирование многопрограммного управления сигналами светофора показало снижение времени задержки (в сравнении с однопрограммным управлением) на 20 %. Предложенная методика позволяет автоматизировать процесс расчета суточных сигнальных планов и установки времени их активности.

    Vlasov A.A., Pilgeikina I.A., Skorikova I.A.
    Method of forming multiprogram control of an isolated intersection
    Computer Research and Modeling, 2021, v. 13, no. 2, pp. 295-303

    The simplest and most desirable method of traffic signal control is precalculated regulation, when the parameters of the traffic light object operation are calculated in advance and activated in accordance to a schedule. This work proposes a method of forming a signal plan that allows one to calculate the control programs and set the period of their activity. Preparation of initial data for the calculation includes the formation of a time series of daily traffic intensity with an interval of 15 minutes. When carrying out field studies, it is possible that part of the traffic intensity measurements is missing. To fill up the missing traffic intensity measurements, the spline interpolation method is used. The next step of the method is to calculate the daily set of signal plans. The work presents the interdependencies, which allow one to calculate the optimal durations of the control cycle and the permitting phase movement and to set the period of their activity. The present movement control systems have a limit on the number of control programs. To reduce the signal plans' number and to determine their activity period, the clusterization using the $k$-means method in the transport phase space is introduced In the new daily signal plan, the duration of the phases is determined by the coordinates of the received cluster centers, and the activity periods are set by the elements included in the cluster. Testing on a numerical illustration showed that, when the number of clusters is 10, the deviation of the optimal phase duration from the cluster centers does not exceed 2 seconds. To evaluate the effectiveness of the developed methodology, a real intersection with traffic light regulation was considered as an example. Based on field studies of traffic patterns and traffic demand, a microscopic model for the SUMO (Simulation of Urban Mobility) program was developed. The efficiency assessment is based on the transport losses estimated by the time spent on movement. Simulation modeling of the multiprogram control of traffic lights showed a 20% reduction in the delay time at the traffic light object in comparison with the single-program control. The proposed method allows automation of the process of calculating daily signal plans and setting the time of their activity.

  2. Алкуса М.С., Гасников А.В., Двуреченский П.Е., Садиев А.А., Разук Л.Я.
    Подход к решению невыпуклой равномерно вогнутой седловой задачи со структурой
    Компьютерные исследования и моделирование, 2022, т. 14, № 2, с. 225-237

    В последнее время седловым задачам уделяется большое внимание благодаря их мощным возможностям моделирования для множества задач из различных областей. Приложения этих задач встречаются в многочисленных современных прикладных областях, таких как робастная оптимизация, распределенная оптимизация, теория игр и~приложения машинного обучения, такие как, например, минимизация эмпирического риска или обучение генеративно-состязательных сетей. Поэтому многие исследователи активно работают над разработкой численных методов для решения седловых задач в самых разных предположениях. Данная статья посвящена разработке численного метода решения седловых задач в невыпуклой равномерно вогнутой постановке. В этой постановке считается, что по группе прямых переменных целевая функция может быть невыпуклой, а по группе двойственных переменных задача является равномерно вогнутой (это понятие обобщает понятие сильной вогнутости). Был изучен более общий класс седловых задач со сложной композитной структурой и гёльдерово непрерывными производными высшего порядка. Для решения рассматриваемой задачи был предложен подход, при котором мы сводим задачу к комбинации двух вспомогательных оптимизационных задач отдельно для каждой группы переменных: внешней задачи минимизации и~внутренней задачи максимизации. Для решения внешней задачи минимизации мы используем адаптивный градиентный метод, который применим для невыпуклых задач, а также работает с неточным оракулом, который генерируется путем неточного решения внутренней задачи максимизации. Для решения внутренней задачи максимизации мы используем обобщенный ускоренный метод с рестартами, который представляет собой метод, объединяющий методы ускорения высокого порядка для минимизации выпуклой функции, имеющей гёльдерово непрерывные производные высшего порядка. Важной компонентой проведенного анализа сложности предлагаемого алгоритма является разделение оракульных сложностей на число вызовов оракула первого порядка для внешней задачи минимизации и оракула более высокого порядка для внутренней задачи максимизации. Более того, оценивается сложность всего предлагаемого подхода.

    Alkousa M.S., Gasnikov A.V., Dvurechensky P.E., Sadiev A.A., Razouk L.Ya.
    An approach for the nonconvex uniformly concave structured saddle point problem
    Computer Research and Modeling, 2022, v. 14, no. 2, pp. 225-237

    Recently, saddle point problems have received much attention due to their powerful modeling capability for a lot of problems from diverse domains. Applications of these problems occur in many applied areas, such as robust optimization, distributed optimization, game theory, and many applications in machine learning such as empirical risk minimization and generative adversarial networks training. Therefore, many researchers have actively worked on developing numerical methods for solving saddle point problems in many different settings. This paper is devoted to developing a numerical method for solving saddle point problems in the nonconvex uniformly-concave setting. We study a general class of saddle point problems with composite structure and H\"older-continuous higher-order derivatives. To solve the problem under consideration, we propose an approach in which we reduce the problem to a combination of two auxiliary optimization problems separately for each group of variables, the outer minimization problem w.r.t. primal variables, and the inner maximization problem w.r.t the dual variables. For solving the outer minimization problem, we use the Adaptive Gradient Method, which is applicable for nonconvex problems and also works with an inexact oracle that is generated by approximately solving the inner problem. For solving the inner maximization problem, we use the Restarted Unified Acceleration Framework, which is a framework that unifies the high-order acceleration methods for minimizing a convex function that has H\"older-continuous higher-order derivatives. Separate complexity bounds are provided for the number of calls to the first-order oracles for the outer minimization problem and higher-order oracles for the inner maximization problem. Moreover, the complexity of the whole proposed approach is then estimated.

  3. Решитько М.А., Усов А.Б.
    Нейросетевой подход к исследованию задач оптимального управления
    Компьютерные исследования и моделирование, 2022, т. 14, № 3, с. 539-557

    В статье предлагается метод исследования задач оптимального управления с использованием нейронных сетей. Рассмотрение проводится на примере задачи контроля качества поверхностных вод. При моделировании системы контроля качества поверхностных вод используются теоретико-игровой и иерархический подходы. Исследуется случай динамической двухуровневой системы управления качеством поверхностных вод, включающий ведущего и нескольких ведомых. Рассмотрение ведется с точки зрения ведомых. В этом случае между ними возникает неантагонистическая игра, в которой строится равновесие Нэша. С математической точки зрения при этом решается задача оптимального управления при наличии фазовых ограничений. Для ее аналитического исследования в работе используется принцип максимума Понтрягина, на основе которого формулируются условия оптимальности. Для решения возникающих при этом систем дифференциальных уравнений используется обучаемая нейронная сеть прямого распространения (feedforward). Приводится обзор существующих методов решения подобных задач с помощью нейронных сетей и методов обучения нейронных сетей. Для оценки ошибки решения, получаемого с помощью нейронной сети, предлагается использовать метод анализа дефекта решения, адаптированный для нейронных сетей. Это позволяет получить количественную оценку ошибки численного решения. Приведены примеры использования нейросетевого подхода для решения модельной задачи оптимального управления и задачи контроля качества поверхностных вод. Полученные в этих примерах результаты сравниваются с точным решением и с результатами, полученными методом стрельбы. Во всех случаях величина ошибки оценивается методом анализа дефекта решения. Нейросетевым методом проводится также исследование системы контроля качества поверхностных вод для случаев, когда решение задачи другими методами получить не удалось (большой временной промежуток моделирования и случай нескольких агентов). В статье иллюстрируются возможность использования нейросетевого подхода для решения различных задач оптимального управления и дифференциальных игр, а также возможность количественной оценки точности решения. Полученные результаты численных экспериментов позволяют говорить о необходимости введения регулирующего органа для достижения устойчивого развития системы.

    Reshitko M.A., Usov A.B.
    Neural network methods for optimal control problems
    Computer Research and Modeling, 2022, v. 14, no. 3, pp. 539-557

    In this study we discuss methods to solve optimal control problems based on neural network techniques. We study hierarchical dynamical two-level system for surface water quality control. The system consists of a supervisor (government) and a few agents (enterprises). We consider this problem from the point of agents. In this case we solve optimal control problem with constraints. To solve this problem, we use Pontryagin’s maximum principle, with which we obtain optimality conditions. To solve emerging ODEs, we use feedforward neural network. We provide a review of existing techniques to study such problems and a review of neural network’s training methods. To estimate the error of numerical solution, we propose to use defect analysis method, adapted for neural networks. This allows one to get quantitative error estimations of numerical solution. We provide examples of our method’s usage for solving synthetic problem and a surface water quality control model. We compare the results of this examples with known solution (when provided) and the results of shooting method. In all cases the errors, estimated by our method are of the same order as the errors compared with known solution. Moreover, we study surface water quality control problem when no solutions is provided by other methods. This happens because of relatively large time interval and/or the case of several agents. In the latter case we seek Nash equilibrium between agents. Thus, in this study we show the ability of neural networks to solve various problems including optimal control problems and differential games and we show the ability of quantitative estimation of an error. From the numerical results we conclude that the presence of the supervisor is necessary for achieving the sustainable development.

  4. Акиндинов Г.Д., Матюхин В.В., Криворотько О.И.
    Численное решение обратной задачи для уравнения гиперболической теплопроводности с малым параметром
    Компьютерные исследования и моделирование, 2023, т. 15, № 2, с. 245-258

    В данной работе приведен алгоритм численного решения обратной начально-краевой задачи для гиперболического уравнения с малым параметром перед второй производной по времени, которая состоит в нахождении начального распределения по заданному конечному. Данный алгоритм позволяет для заданной наперед точности получить решение задачи (в допустимых пределах точности). Данный алгоритм позволяет избежать сложностей, аналогичных случаю с уравнением теплопроводности с обращенным временем. Предложенный алгоритм позволяет подобрать оптимальный размер конечно-разностной схемы путем обучения на относительно больших разбиениях сетки и малом числе итераций градиентного метода. Предложенный алгоритм позволяет получить оценку для константы Липшица градиента целевого функционала. Также представлен способ оптимального выбора малого параметра при второй производной для ускорения решения задачи. Данный подход может быть применен и в других задачах с похожей структурой, например в решении уравнений состояния плазмы, в социальных процессах или в различных биологических задачах. Новизна данной работы заключается в разработке оптимальной процедуры выбора размера шага путем применения экстраполяции Ричардсона и обучения на малых размерах сетки для решения задач оптимизации с неточным градиентом в обратных задачах.

    Akindinov G.D., Matyukhin V.V., Krivorotko O.I.
    Numerical solving of an inverse problem of a hyperbolic heat equation with small parameter
    Computer Research and Modeling, 2023, v. 15, no. 2, pp. 245-258

    In this paper we describe an algorithm of numerical solving of an inverse problem on a hyperbolic heat equation with additional second time derivative with a small parameter. The problem in this case is finding an initial distribution with given final distribution. This algorithm allows finding a solution to the problem for any admissible given precision. Algorithm allows evading difficulties analogous to the case of heat equation with inverted time. Furthermore, it allows finding an optimal grid size by learning on a relatively big grid size and small amount of iterations of a gradient method and later extrapolates to the required grid size using Richardson’s method. This algorithm allows finding an adequate estimate of Lipschitz constant for the gradient of the target functional. Finally, this algorithm may easily be applied to the problems with similar structure, for example in solving equations for plasma, social processes and various biological problems. The theoretical novelty of the paper consists in the developing of an optimal procedure of finding of the required grid size using Richardson extrapolations for optimization problems with inexact gradient in ill-posed problems.

  5. Умнов А.Е., Умнов Е.А.
    Использование функций обратных связей для решения задач параметрического программирования
    Компьютерные исследования и моделирование, 2023, т. 15, № 5, с. 1125-1151

    Рассматривается конечномерная оптимизационная задача, постановка которой, помимо искомых переменных, содержит параметры. Ее решение есть зависимость оптимальных значений переменных от параметров. В общем случае такие зависимости не являются функциями, поскольку могут быть неоднозначными, а в функциональном случае — быть недифференцируемыми. Кроме того, область их существования может оказаться уже области определения функций в условии задачи. Эти свойства затрудняют решение как исходной задачи, так и задач, в постановку которых входят данные зависимости. Для преодоления этих затруднений обычно применяются методы типа недифференцируемой оптимизации.

    В статье предлагается альтернативный подход, позволяющий получать решения параметрических задач в форме, лишенной указанных свойств. Показывается, что такие представления могут исследоваться стандартными алгоритмами, основанными на формуле Тейлора. Данная форма есть функция, гладко аппроксимирующая решение исходной задачи. При этом величина погрешности аппроксимации регулируется специальным параметром. Предлагаемые аппроксимации строятся с помощью специальных функций, устанавливающих обратные связи между переменными и множителями Лагранжа. Приводится краткое описание этого метода для линейных задач с последующим обобщением на нелинейный случай.

    Построение аппроксимации сводится к отысканию седловой точки модифицированной функции Лагранжа исходной задачи. Показывается, что необходимые условия существования такой седловой точки подобны условиям теоремы Каруша – Куна – Таккера, но не содержат в явном виде ограничений типа неравенств и условий дополняющей нежесткости. Эти необходимые условия аппроксимацию определяют неявным образом. Поэтому для вычисления ее дифференциальных характеристик используется теорема о неявных функциях. Эта же теорема применяется для уменьшения погрешности аппроксимации.

    Особенности практической реализации метода функций обратных связей, включая оценки скорости сходимости к точному решению, демонстрируются для нескольких конкретных классов параметрических оптимизационных задач. Конкретно: рассматриваются задачи поиска глобального экстремума функций многих переменных и задачи на кратный экстремум (максимин-минимакс). Также рассмотрены оптимизационные задачи, возникающие при использовании многокритериальных математических моделей. Для каждого из этих классов приводятся демонстрационные примеры.

    Umnov A.E., Umnov E.A.
    Using feedback functions to solve parametric programming problems
    Computer Research and Modeling, 2023, v. 15, no. 5, pp. 1125-1151

    We consider a finite-dimensional optimization problem, the formulation of which in addition to the required variables contains parameters. The solution to this problem is a dependence of optimal values of variables on parameters. In general, these dependencies are not functions because they can have ambiguous meanings and in the functional case be nondifferentiable. In addition, their domain of definition may be narrower than the domains of definition of functions in the condition of the original problem. All these properties make it difficult to solve both the original parametric problem and other tasks, the statement of which includes these dependencies. To overcome these difficulties, usually methods such as non-differentiable optimization are used.

    This article proposes an alternative approach that makes it possible to obtain solutions to parametric problems in a form devoid of the specified properties. It is shown that such representations can be explored using standard algorithms, based on the Taylor formula. This form is a function smoothly approximating the solution of the original problem for any parameter values, specified in its statement. In this case, the value of the approximation error is controlled by a special parameter. Construction of proposed approximations is performed using special functions that establish feedback (within optimality conditions for the original problem) between variables and Lagrange multipliers. This method is described for linear problems with subsequent generalization to the nonlinear case.

    From a computational point of view the construction of the approximation consists in finding the saddle point of the modified Lagrange function of the original problem. Moreover, this modification is performed in a special way using feedback functions. It is shown that the necessary conditions for the existence of such a saddle point are similar to the conditions of the Karush – Kuhn – Tucker theorem, but do not contain constraints such as inequalities and conditions of complementary slackness. Necessary conditions for the existence of a saddle point determine this approximation implicitly. Therefore, to calculate its differential characteristics, the implicit function theorem is used. The same theorem is used to reduce the approximation error to an acceptable level.

    Features of the practical implementation feedback function method, including estimates of the rate of convergence to the exact solution are demonstrated for several specific classes of parametric optimization problems. Specifically, tasks searching for the global extremum of functions of many variables and the problem of multiple extremum (maximin-minimax) are considered. Optimization problems that arise when using multicriteria mathematical models are also considered. For each of these classes, there are demo examples.

  6. Худхур Х.М., Халил И.Х.
    Удаление шума из изображений с использованием предлагаемого алгоритма трехчленного сопряженного градиента
    Компьютерные исследования и моделирование, 2024, т. 16, № 4, с. 841-853

    Алгоритмы сопряженных градиентов представляют собой важный класс алгоритмов безусловной оптимизации с хорошей локальной и глобальной сходимостью и скромными требованиями к памяти. Они занимают промежуточное место между методом наискорейшего спуска и методом Ньютона, поскольку требуют вычисленияи хранения только первых производных и как правило быстрее методов наискорейшего спуска. В данном исследовании рассмотрен новый подход в задаче восстановления изображений. Он наследует одновременно методу сопряженных градиентов Флетчера – Ривза (FR) и трехкомпонентному методу сопряженных градиентов (TTCG), и поэтому назван авторами гибридным трехкомпонентным методом сопряженных градиентов (HYCGM). Новое направление спуска в нем учитывает текущее направления градиента, предыдущее направления спуска и градиент из предыдущей итерации. Показано, что новый алгоритм обладает свойствами глобальной сходимости и монотонности при использовании неточного линейного поиска типа Вулфа при некоторых стандартных предположениях. Для подтверждения эффективности предложенного алгоритма приводятся результаты численных экспериментов предложенного метода в сравнении с классическим методом Флетчера – Ривза (FR) и трехкомпонентным методом Флетчера – Ривза (TTFR).

    Khudhur H.M., Halil I.H.
    Noise removal from images using the proposed three-term conjugate gradient algorithm
    Computer Research and Modeling, 2024, v. 16, no. 4, pp. 841-853

    Conjugate gradient algorithms represent an important class of unconstrained optimization algorithms with strong local and global convergence properties and simple memory requirements. These algorithms have advantages that place them between the steep regression method and Newton’s algorithm because they require calculating the first derivatives only and do not require calculating and storing the second derivatives that Newton’s algorithm needs. They are also faster than the steep descent algorithm, meaning that they have overcome the slow convergence of this algorithm, and it does not need to calculate the Hessian matrix or any of its approximations, so it is widely used in optimization applications. This study proposes a novel method for image restoration by fusing the convex combination method with the hybrid (CG) method to create a hybrid three-term (CG) algorithm. Combining the features of both the Fletcher and Revees (FR) conjugate parameter and the hybrid Fletcher and Revees (FR), we get the search direction conjugate parameter. The search direction is the result of concatenating the gradient direction, the previous search direction, and the gradient from the previous iteration. We have shown that the new algorithm possesses the properties of global convergence and descent when using an inexact search line, relying on the standard Wolfe conditions, and using some assumptions. To guarantee the effectiveness of the suggested algorithm and processing image restoration problems. The numerical results of the new algorithm show high efficiency and accuracy in image restoration and speed of convergence when used in image restoration problems compared to Fletcher and Revees (FR) and three-term Fletcher and Revees (TTFR).

  7. Житнухин Н.А., Жадан А.Ю., Кондратов И.В., Аллахвердян А.Л., Граничин О.Н., Петросян О.Л., Романовский А.В., Харин В.С.
    Многоагентный протокол локального голосования для онлайнового планирования DAG
    Компьютерные исследования и моделирование, 2025, т. 17, № 1, с. 29-44

    Планирование вычислительных рабочих процессов, представленных направленными ациклическими графами (DAG), имеет ключевое значение для многих областей информатики, таких как облачные/edge задачи с распределенной рабочей нагрузкой и анализ данных. Сложность онлайнового планирования DAG усугубляется большим количеством вычислительных узлов, задержками передачи данных, неоднородностью (по типу и вычислительной мощности) исполнителей, ограничениями предшествования, накладываемыми DAG, и неравномерностью поступления задач. В данной статье представлен мультиагентный протокол локального голосования (MLVP) — новый подход, ориентированный на динамическое распределение нагрузки при планировании DAG в гетерогенных вычислительных средах, где исполнители представлены в виде агентов. MLVP использует протокол локального голосования для достижения эффективного распределения нагрузки, формулируя проблему как дифференцированное достижение консенсуса. Алгоритм вычисляет агрегированную метрику DAG для каждой пары исполнитель – узел на основе зависимостей между узлами, доступности узлов и производительности исполнителей. Баланс этих метрик как взвешенная сумма оптимизируется с помощью генетического алгоритма для вероятностного распределения задач, что позволяет добиться эффективного распределения рабочей нагрузки за счет обмена информацией и достижения консенсуса между исполнителями всей системы и, таким образом, улучшить время выполнения. Эффективность MLVP демонстрируется путем сравнения с современным алгоритмом планирования DAG и популярными эвристиками, такими как DONF, FIFO, Min-Min и Max-Min. Численное моделирование показывает, что MLVP достигает улучшения makepsan до 70% на определенных топологиях графов и среднего сокращения makepan на 23,99% по сравнению с DONF (современная эвристика планирования DAG) на случайно сгенерированном разнообразном наборе DAG. Примечательно, что масштабируемость алгоритма подтверждается ростом производительности при увеличении числа исполнителей и узлов графа.

    Zhitnukhin N.A., Zhadan A.Y., Kondratov I.V., Allahverdyan A.L., Granichin O.N., Petrosian O.L., Romanovskii A.V., Kharin V.S.
    Multi-agent local voting protocol for online DAG scheduling
    Computer Research and Modeling, 2025, v. 17, no. 1, pp. 29-44

    Scheduling computational workflows represented by directed acyclic graphs (DAGs) is crucial in many areas of computer science, such as cloud/edge tasks with distributed workloads and data mining. The complexity of online DAG scheduling is compounded by the large number of computational nodes, data transfer delays, heterogeneity (by type and processing power) of executors, precedence constraints imposed by DAG, and the nonuniform arrival of tasks. This paper introduces the Multi-Agent Local Voting Protocol (MLVP), a novel approach focused on dynamic load balancing for DAG scheduling in heterogeneous computing environments, where executors are represented as agents. The MLVP employs a local voting protocol to achieve effective load distribution by formulating the problem as a differentiated consensus achievement. The algorithm calculates an aggregated DAG metric for each executor-node pair based on node dependencies, node availability, and executor performance. The balance of these metrics as a weighted sum is optimized using a genetic algorithm to assign tasks probabilistically, achieving efficient workload distribution via information sharing and reaching consensus among the executors across the system and thus improving makespan. The effectiveness of the MLVP is demonstrated through comparisons with the state-of-the-art DAG scheduling algorithm and popular heuristics such as DONF, FIFO, Min- Min, and Max-Min. Numerical simulations show that MLVP achieves makepsan improvements of up to 70% on specific graph topologies and an average makespan reduction of 23.99% over DONF (state-of-the-art DAG scheduling heuristic) across randomly generated diverse set of DAGs. Notably, the algorithm’s scalability is evidenced by enhanced performance with increasing numbers of executors and graph nodes.

  8. Белотелов В.Н., Дарьина А.Н.
    Метод поиска касательных в задаче быстродействия для колесного мобильного робота
    Компьютерные исследования и моделирование, 2025, т. 17, № 3, с. 401-421

    Поиск оптимальной траектории движения является нетривиальной задачей, на решение которой направлено большое число исследований. Большинство этих исследований посвящено решению задачи в общем виде вне зависимости от модели движения объекта. В такой постановке поиск оптимальной траектории возможен только численными методами. Вместе с тем в некоторых случаях возможно нахождение оптимальной траектории в аналитическом виде. В данной статье рассмотрена задача быстродействия с фазовыми ограничениями для колесного мобильного робота, движущегося по горизонтальной плоскости. Математическая модель робота является кинематической. Фазовые ограничения соответствуют препятствиям на плоскости, заданным в виде непересекающихся кругов, которые требуется избегать при движении. Независимыми управляющими воздействиями являются скорости колес, которые ограничены по абсолютной величине. Такая постановка часто применяется в тех случаях, когда динамические переходные процессы несущественны, например при управлении медленно движущимися гусеничными или колесными устройствами, в которых приоритет отдается мощности двигателей, а не их скорости. В статье показывается, что оптимальная траектория движения из начальной точки в конечную в выбранной кинематической постановке представляет собой последовательность отрезков общих касательных к парам кругов и дуг окружностей этих кругов. Геометрически кратчайший путь между начальной и конечной точками также состоит из отрезков касательных и дуг окружностей, поэтому оптимальное по быстродействию движение соответствует одному из локальных минимумов при поиске кратчайшего пути. Предложен аналитический метод поиска оптимальной траектории движения, основанный на построении графа возможных траекторий, где ребрами являются прямолинейные отрезки и дуги, а вершинами — точки их соединений, и поиска кратчайшего (быстрейшего) пути на графе с помощью метода Дейкстры. Представлено обоснование метода. Приведены результаты численных экспериментов по нахождению оптимальной траектории.

    Belotelov V.N., Daryina A.N.
    Tangent search method in time optimal problem for a wheeled mobile robot
    Computer Research and Modeling, 2025, v. 17, no. 3, pp. 401-421

    Searching optimal trajectory of motion is a complex problem that is investigated in many research studies. Most of the studies investigate methods that are applicable to such a problem in general, regardless of the model of the object. With such general approach, only numerical solution can be found. However, in some cases it is possible to find an optimal trajectory in a closed form. Current article considers a time optimal problem with state limitations for a wheeled mobile differential robot that moves on a horizontal plane. The mathematical model of motion is kinematic. The state constraints correspond to the obstacles on the plane defined as circles that need to be avoided during motion. The independent control inputs are the wheel speeds that are limited in absolute value. Such model is commonly used in problems where the transients are considered insignificant, for example, when controlling tracked or wheeled devices that move slowly, prioritizing traction power over speed. In the article it is shown that the optimal trajectory from the starting point to the finishing point in such kinematic approach is a sequence of straight segments of tangents to the obstacles and arcs of the circles that limit the obstacles. The geometrically shortest path between the start and the finish is also a sequence of straight lines and arcs, therefore the time-optimal trajectory corresponds to one of the local minima when searching for the shortest path. The article proposes a method of search for the time-optimal trajectory based on building a graph of possible trajectories, where the edges are the possible segments of the tajectory, and the vertices are the connections between them. The optimal path is sought using Dijkstra’s algorithm. The theoretical foundation of the method is given, and the results of computer investigation of the algorithm are provided.

  9. В статье сформулирован обобщенный подход к выбору значений структурных параметров искусственной нейронной сети (ИНС) и объема обучающий выборки, основанный на принципе минимизации количества элементов структуры ИНС и объема обучающей выборки при ограничении на значение показателя качества работы нейросетевой модели динамики объекта. Реализован алгоритм выбора структурных параметров ИНС и построения нейросетевой модели.
    Проведена серия вычислительных экспериментов, демонстрирующая применимость алгоритма для построения моделей динамических объектов, в основе которых лежит нелинейная автокорреляционная нейронная сеть.

    Shumixin A.G., Boyarshinova A.S.
    Algorithm of artificial neural network architecture and training set size configuration within approximation of dynamic object behavior
    Computer Research and Modeling, 2015, v. 7, no. 2, pp. 243-251

    The article presents an approach to configuration of an artificial neural network architecture and a training set size. Configuration is based on parameter minimization with constraints specifying neural network model quality criteria. The algorithm of artificial neural network architecture and training set size configuration is applied to dynamic object artificial neural network approximation.
    Series of computational experiments were performed. The method is applicable to construction of dynamic object models based on non-linear autocorrelation neural networks.

    Просмотров за год: 2. Цитирований: 8 (РИНЦ).
  10. Свириденко А.Б.
    Априорная поправка в ньютоновских методах оптимизации
    Компьютерные исследования и моделирование, 2015, т. 7, № 4, с. 835-863

    Представлен подход к уменьшению значения нормы поправки в ньютоновских методах оптимизации, основанных на факторизации Холесского, в основе которого лежит интеграция с техникой выбора ведущего элемента алгоритма линейного программирования как метода решения системы уравнений. Исследуются вопросы увеличения численной устойчивости разложения Холесского и метода исключения Гаусса.

    Sviridenko A.B.
    The correction to Newton's methods of optimization
    Computer Research and Modeling, 2015, v. 7, no. 4, pp. 835-863

    An approach to the decrease of norm of the correction in Newton’s methods of optimization, based on the Cholesky’s factorization is presented, which is based on the integration with the technique of the choice of leading element of algorithm of linear programming as a method of solving the system of equations. We investigate the issues of increasing of the numerical stability of the Cholesky’s decomposition and the Gauss’ method of exception.

    Просмотров за год: 1. Цитирований: 6 (РИНЦ).
Страницы: « первая предыдущая следующая последняя »

Журнал индексируется в Scopus

Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"

Международная Междисциплинарная Конференция МАТЕМАТИКА. КОМПЬЮТЕР. ОБРАЗОВАНИЕ.