Все выпуски
- 2025 Том 17
- 2024 Том 16
- 2023 Том 15
- 2022 Том 14
- 2021 Том 13
- 2020 Том 12
- 2019 Том 11
- 2018 Том 10
- 2017 Том 9
- 2016 Том 8
- 2015 Том 7
- 2014 Том 6
- 2013 Том 5
- 2012 Том 4
- 2011 Том 3
- 2010 Том 2
- 2009 Том 1
-
Моделирование трендов динамики объема и структуры накопленной кредитной задолженности в банковской системе
Компьютерные исследования и моделирование, 2019, т. 11, № 5, с. 965-978Объем и структура накопленной кредитной задолженности перед банковской системой зависят от множества факторов, важнейшим из которых является текущий и ожидаемый уровень процентных ставок. Изменения в поведении заемщиков в ответ на сигналы денежно-кредитной политики позволяют разрабатывать эконометрические модели, представляющие динамику структуры кредитного портфеля банковской системы по срокам размещения средств. Эти модели помогают рассчитать показатели, характеризующие влияние регулирующих действий со стороны центрального банка на уровень процентного риска в целом. В работе проводилась идентификация четырех видов моделей: дискретной линейной модели, основанной на передаточных функциях, модели в пространстве состояний, классической эконометрической модели ARMAX и нелинейной модели типа Гаммерштейна – Винера. Для их описания использовался формальный язык теории автоматического управления, а для идентификации — программный пакет MATLAB. В ходе исследования было выявлено, что для краткосрочного прогнозирования объема и структуры кредитной задолженности больше всего подходит дискретная линейная модель в пространстве состояний, позволяющая прогнозировать тренды по структуре накопленной кредитной задолженности на прогнозном горизонте в 1 год. На примере реальных данных по российской банковской системе модель показывает высокую чувствительность реакции на изменения в денежно-кредитной политике, проводимой центральным банком РФ, структуры кредитной задолженности по срокам ее погашения. Так, при резком повышении процентных ставок в ответ на внешние рыночные шоки заемщики предпочитают сокращать сроки кредитования, при этом общий уровень задолженности повышается прежде всего за счет возрастающей переоценки номинального долга. При формировании устойчивого тренда снижения процентных ставок структура задолженности смещается в сторону долгосрочных кредитов.
Ключевые слова: кредитная задолженность, процентная ставка, динамическое моделирование, модель в пространстве состояний, прогнозирование.
Modelling of trends in the volume and structure of accumulated credit indebtedness in the banking system
Computer Research and Modeling, 2019, v. 11, no. 5, pp. 965-978The volume and structure of accumulated credit debt to the banking system depends on many factors, the most important of which is the level of interest rates. The correct assessment of borrowers’ reaction to the changes in the monetary policy allows to develop econometric models, representing the structure of the credit portfolio in the banking system by terms of lending. These models help to calculate indicators characterizing the level of interest rate risk in the whole system. In the study, we carried out the identification of four types of models: discrete linear model based on transfer functions; the state-space model; the classical econometric model ARMAX, and a nonlinear Hammerstein –Wiener model. To describe them, we employed the formal language of automatic control theory; to identify the model, we used the MATLAB software pack-age. The study revealed that the discrete linear state-space model is most suitable for short-term forecasting of both the volume and the structure of credit debt, which in turn allows to predict trends in the structure of accumulated credit debt on the forecasting horizon of 1 year. The model based on the real data has shown a high sensitivity of the structure of credit debt by pay back periods reaction to the changes in the Ñentral Bank monetary policy. Thus, a sharp increase in interest rates in response to external market shocks leads to shortening of credit terms by borrowers, at the same time the overall level of debt rises, primarily due to the increasing revaluation of nominal debt. During the stable falling trend of interest rates, the structure shifts toward long-term debts.
-
Моделирование процесса истощения газоконденсатного пласта
Компьютерные исследования и моделирование, 2020, т. 12, № 5, с. 1081-1095Одна из трудностей разработки газоконденсатных месторождений обусловлена тем, что часть углеводородов газоносного слоя присутствует в немв виде конденсата, который застревает в порах пласта и извлечению не подлежит. В этой связи активно ведутся исследования, направленные на повышение извлекаемости углеводородов в подобных месторождениях. В том числе значительное количество публикаций посвящено развитию методов математического моделирования прохождения многокомпонентных газоконденсатных смесей через пористую среду в различных условиях.
В настоящей работе в рамках классического подхода, основанного на законе Дарси и законе неразрывности потоков, сформулирована математическая постановка начально-граничной задачи для системы нелинейных дифференциальных уравнений, описывающая прохождение многокомпонентной газоконденсатной смеси через пористую среду в режиме истощения. Разработанная обобщенная вычислительная схема на основе конечно-разностной аппроксимации и метода Рунге – Кутты четвертого порядка может использоваться для расчетов как в пространственно одномерном случае, соответствующемусловиям лабораторного эксперимента, так и в двумерном случае, когда речь идет о моделировании плоского газоносного пласта с круговой симметрией.
Численное решение упомянутой системы уравнений реализовано на основе комбинированного использования C++ и Maple с применением технологии параллельного программирования MPI для ускорения вычислений. Расчеты выполнены на кластере HybriLIT Многофункционального информационно-вычислительного комплекса Лаборатории информационных технологий Объединенного института ядерных исследований.
Численные результаты сопоставлены с данными о динамике выхода девятикомпонентной углеводородной смеси в зависимости от давления, полученными на лабораторной установке (ВНИИГАЗ, Ухта). Расчеты проводились для двух типов пористого наполнителя в лабораторной модели пласта: терригенного (при 25 ◦С) и карбонатного (при 60 ◦С). Показано, что используемый подход обеспечивает согласие полученных численных результатов с экспериментальными данными. Путем подгонки к экспериментальным данным по истощению лабораторной модели пласта получены значения параметров, определяющих коэффициент межфазного перехода для моделируемой системы. С использованием тех же параметров было проведено компьютерное моделирование истощения тонкого газоносного слоя в приближении круговой симметрии.
Ключевые слова: компьютерное моделирование, многокомпонентная система углеводородов.
Simulation of the gas condensate reservoir depletion
Computer Research and Modeling, 2020, v. 12, no. 5, pp. 1081-1095One of problems in developing the gas condensate fields lies on the fact that the condensed hydrocarbons in the gas-bearing layer can get stuck in the pores of the formation and hence cannot be extracted. In this regard, research is underway to increase the recoverability of hydrocarbons in such fields. This research includes a wide range of studies on mathematical simulations of the passage of gas condensate mixtures through a porous medium under various conditions.
In the present work, within the classical approach based on the Darcy law and the law of continuity of flows, we formulate an initial-boundary value problem for a system of nonlinear differential equations that describes a depletion of a multicomponent gas-condensate mixture in porous reservoir. A computational scheme is developed on the basis of the finite-difference approximation and the fourth order Runge .Kutta method. The scheme can be used for simulations both in the spatially one-dimensional case, corresponding to the conditions of the laboratory experiment, and in the two-dimensional case, when it comes to modeling a flat gas-bearing formation with circular symmetry.
The computer implementation is based on the combination of C++ and Maple tools, using the MPI parallel programming technique to speed up the calculations. The calculations were performed on the HybriLIT cluster of the Multifunctional Information and Computing Complex of the Laboratory of Information Technologies of the Joint Institute for Nuclear Research.
Numerical results are compared with the experimental data on the pressure dependence of output of a ninecomponent hydrocarbon mixture obtained at a laboratory facility (VNIIGAZ, Ukhta). The calculations were performed for two types of porous filler in the laboratory model of the formation: terrigenous filler at 25 .„R and carbonate one at 60 .„R. It is shown that the approach developed ensures an agreement of the numerical results with experimental data. By fitting of numerical results to experimental data on the depletion of the laboratory reservoir, we obtained the values of the parameters that determine the inter-phase transition coefficient for the simulated system. Using the same parameters, a computer simulation of the depletion of a thin gas-bearing layer in the circular symmetry approximation was carried out.
-
Анализ идентифицируемости математической модели пиролиза пропана
Компьютерные исследования и моделирование, 2021, т. 13, № 5, с. 1045-1057Работа посвящена численному моделированию и исследованию кинетической модели пиролиза пропана. Изучение кинетики реакций является необходимой стадией моделирования динамики газового потока в реакторе.
Кинетическая модель представляет собой нелинейную систему обыкновенных дифференциальных уравнений первого порядка с параметрами, роль которых играют константы скоростей стадий. Математическое моделирование процесса основано на использовании закона сохранения масс. Для решения исходной (прямой) задачи используется неявный метод решения жестких систем обыкновенных дифференциальных уравнений. Модель содержит 60 входных кинетических параметров и 17 выходных параметров, соответствующих веществам реакции, из которых наблюдаемыми являются только 9. В процессе решения задачи по оценке параметров (обратная задача) возникает вопрос неединственности набора параметров, удовлетворяющего имеющимся экспериментальным данным. Поэтому перед решением обратной задачи проводится оценка возможности определения параметров модели — анализ идентифицируемости.
Для анализа идентифицируемости мы используем ортогональный метод, который хорошо себя зарекомендовал для анализа моделей с большим числом параметров. Основу алгоритма составляет анализ матрицы чувствительно- сти методами дифференциальной и линейной алгебры, показывающей степень зависимости неизвестных параметров моделей от заданных измерений. Анализ чувствительности и идентифицируемости показал, что параметры модели устойчиво определяются по заданному набору экспериментальных данных. В статье представлен список параметров модели от наиболее идентифицируемого до наименее идентифицируемого. Учитывая анализ идентифицируемости математической модели, были введены более жесткие ограничения на поиск слабоидентифицируемых параметров при решении обратной задачи.
Обратная задача по оценке параметров была решена с использованием генетического алгоритма. В статье представлены найденные оптимальные значения кинетических параметров. Представлено сравнение экспериментальных и расчетных зависимостей концентраций пропана, основных и побочных продуктов реакции от температуры для разных расходов смеси. На основании соответствия полученных результатов физико-химическим законам и экспериментальным данным сделан вывод об адекватности построенной математической модели.
Ключевые слова: пиролиз пропана, математическая модель, химическая кинетика, анализ чувствительности, анализ идентифицируемости.
Analysis of the identifiability of the mathematical model of propane pyrolysis
Computer Research and Modeling, 2021, v. 13, no. 5, pp. 1045-1057The article presents the numerical modeling and study of the kinetic model of propane pyrolysis. The study of the reaction kinetics is a necessary stage in modeling the dynamics of the gas flow in the reactor.
The kinetic model of propane pyrolysis is a nonlinear system of ordinary differential equations of the first order with parameters, the role of which is played by the reaction rate constants. Math modeling of processes is based on the use of the mass conservation law. To solve an initial (forward) problem, implicit methods for solving stiff ordinary differential equation systems are used. The model contains 60 input kinetic parameters and 17 output parameters corresponding to the reaction substances, of which only 9 are observable. In the process of solving the problem of estimating parameters (inverse problem), there is a question of non-uniqueness of the set of parameters that satisfy the experimental data. Therefore, before solving the inverse problem, the possibility of determining the parameters of the model is analyzed (analysis of identifiability).
To analyze identifiability, we use the orthogonal method, which has proven itself well for analyzing models with a large number of parameters. The algorithm is based on the analysis of the sensitivity matrix by the methods of differential and linear algebra, which shows the degree of dependence of the unknown parameters of the models on the given measurements. The analysis of sensitivity and identifiability showed that the parameters of the model are stably determined from a given set of experimental data. The article presents a list of model parameters from most to least identifiable. Taking into account the analysis of the identifiability of the mathematical model, restrictions were introduced on the search for less identifiable parameters when solving the inverse problem.
The inverse problem of estimating the parameters was solved using a genetic algorithm. The article presents the found optimal values of the kinetic parameters. A comparison of the experimental and calculated dependences of the concentrations of propane, main and by-products of the reaction on temperature for different flow rates of the mixture is presented. The conclusion about the adequacy of the constructed mathematical model is made on the basis of the correspondence of the results obtained to physicochemical laws and experimental data.
-
Разработка конструкции, моделирование и управление шарниром с переменной упругостью на основе магнитной пружины кручения
Компьютерные исследования и моделирование, 2023, т. 15, № 5, с. 1323-1347С появлением промышленных роботов робототехника приобретает значение во всемирном масштабе как в экономике, так и в науке. Однако, их возможности сильно ограничены, особенно в части выполнения контактных задач, в которых есть необходимость регулирования или по крайней мере ограничения усилия в контакте. В определенный момент было замечено, что упругость в механической цепи шарнира, считавшаяся ранее негативным фактором, в этомо тношении напротив является полезной. Данное наблюдение привело к появлению роботов с упругими шарнирами, пригодных к выполнению контактных задач и кооперативной деятельности в частности, в результате чего их распространение сегодня становится всё шире. Многие исследователи стремились реализовать подобные устройства не только в виде простейших последовательных упругих приводов, но и посредствомбо лее сложных шарниров с переменной упругостью (ШПУ), способных изменять собственную механическую жесткость. Все упругие шарниры обеспечивают в определенной мере устойчивость к ударным нагрузкам и безопасность взаимодействия с объектами внешней среды, однако изменение жесткости позволяет получить дополнительные преимущества, такие как энерго-эффективность и адаптируемость к задачам.
В настоящей статье представлена новая реализация ШПУ, с магнитной муфтой в качестве упругого элемента. Магнитная передача является бесконтактной, и потому обладает преимуществом с точки зрения снижения чувствительности к смещению и рассогласованию осей. Описание модели трения также упрощается. Кроме того, данная муфта обладает характеристикой жесткости, которая не только не возрастает резко с повышением нагрузки, но становится более плавной, и даже снижается после точки максимума. Вследствие этого, при достижении максимального момента, муфта проскальзывает, после чего положение равновесия уже определяется новой парой полюсов. В итоге данное решение снижает риск механического повреждения. В статье подробно рассмотрен процесс разработки шарнира, представлена его математическая модель. Также предложена реализация системы управления шарниром и проведено компьютерное моделирование, подтверждающее принятые в разработке решения.
Ключевые слова: робототехника, разработка конструкции, система управления, приводы с последовательной упругостью, приводы с переменной упругостью, магнитные пружины, управление с сохранением упругой структуры.
Design, modeling, and control of a variable stiffness joint based on a torsional magnetic spring
Computer Research and Modeling, 2023, v. 15, no. 5, pp. 1323-1347Industrial robots have made it possible for robotics to become a worldwide discipline both in economy and in science. However, their capabilities are limited, especially regarding contact tasks where it is required to regulate or at least limit contact forces. At one point, it was noticed that elasticity in the joint transmission, which was treated as a drawback previously, is actually helpful in this regard. This observation led to the introduction of elastic joint robots that are well-suited to contact tasks and cooperative behavior in particular, so they become more and more widespread nowadays. Many researchers try to implement such devices not with trivial series elastic actuators (SEA) but with more sophisticated variable stiffness actuators (VSA) that can regulate their own mechanical stiffness. All elastic actuators demonstrate shock robustness and safe interaction with external objects to some extent, but when stiffness may be varied, it provides additional benefits, e. g., in terms of energy efficiency and task adaptability. Here, we present a novel variable stiffness actuator with a magnetic coupler as an elastic element. Magnetic transmission is contactless and thus advantageous in terms of robustness to misalignment. In addition, the friction model of the transmission becomes less complex. It also has milder stiffness characteristic than typical mechanical nonlinear springs, moreover, the stiffness curve has a maximum after which it descends. Therefore, when this maximum torque is achieved, the coupler slips, and a new pair of poles defines the equilibrium position. As a result, the risk of damage is smaller for this design solution. The design of the joint is thoroughly described, along with its mathematical model. Finally, the control system is also proposed, and simulation tests confirm the design ideas.
-
Моделирование динамики численности занятого населения в отраслях экономики: агент-ориентированный подход
Компьютерные исследования и моделирование, 2018, т. 10, № 6, с. 919-937Статья посвящена моделированию динамики численности занятого населения по отраслям экономики как на национальном, так и на региональном уровне. Отсутствие целевого распределения работников в рыночной экономике требует исследования системных процессов на рынке труда, приводящих к различной динамике численности занятых в отраслях экономики. В этом случае значимыми становятся личные стратегии выбора трудовой деятельности экономическими агентами. Наличие различных стратегий приводит к появлению страт на рынке труда с динамично изменяющейся численностью занятых, неравномерно распределенной между отраслями экономики. В результате этого могут наблюдаться нелинейные колебания численности занятого населения, для исследования которых релевантен инструментарий агент-ориентированного моделирования. В статье на примере Еврейской автономной области рассмотрены синхронные и противофазные колебания численности занятых по видам экономической деятельности, обнаруженные во временных рядах статистических данных для 2008–2016 гг. Показано, что такие колебания наблюдаются по возрастным группам работников. Ввиду этого выдвинута гипотеза о том, что агент на рынке труда при выборе места работы руководствуется стратегией, характерной для его возрастной группы, что в итоге прямо влияет на распределение численности занятых различных когорт и общую численность занятых в отраслях экономики. При этом стратегия определяется исходя из социально-экономических характеристик отраслей (различного уровня оплаты труда, условий труда, престижа профессии). Для проверки гипотезы построена базовая агент-ориентированная модель трехотраслевой экономики, в которой учтены различные стратегии экономических агентов, включающие выбор наибольшей заработной платы, наиболее высокого престижа профессии и наилучших условий труда. В результате численных экспериментов показано, что наличие различных стратегий выбора отрасли в совокупности с возрастными предпочтениями работодателей внутри отрасли приводит к периодическим и сложным режимам динамики численности разновозрастных занятых. Такие возрастные предпочтения могут быть вызваны, например, требованием работодателя к наличию трудового стажа и образования. Также сущетвенные изменения возрастной структуры занятого населения могут возникнуть вследствие миграции.
Ключевые слова: занятое население, отрасли экономики, агент-ориентированное моделирование, нелинейная динамика.
Modeling of population dynamics employed in the economic sectors: agent-oriented approach
Computer Research and Modeling, 2018, v. 10, no. 6, pp. 919-937Просмотров за год: 34.The article deals with the modeling of the number of employed population by branches of the economy at the national and regional levels. The lack of targeted distribution of workers in a market economy requires the study of systemic processes in the labor market that lead to different dynamics of the number of employed in the sectors of the economy. In this case, personal strategies for choosing labor activity by economic agents become important. The presence of different strategies leads to the emergence of strata in the labor market with a dynamically changing number of employees, unevenly distributed among the sectors of the economy. As a result, non-linear fluctuations in the number of employed population can be observed, the toolkit of agentbased modeling is relevant for the study of the fluctuations. In the article, we examined in-phase and anti-phase fluctuations in the number of employees by economic activity on the example of the Jewish Autonomous Region in Russia. The fluctuations found in the time series of statistical data for 2008–2016. We show that such fluctuations appear by age groups of workers. In view of this, we put forward a hypothesis that the agent in the labor market chooses a place of work by a strategy, related with his age group. It directly affects the distribution of the number of employed for different cohorts and the total number of employed in the sectors of the economy. The agent determines the strategy taking into account the socio-economic characteristics of the branches of the economy (different levels of wages, working conditions, prestige of the profession). We construct a basic agentoriented model of a three-branch economy to test the hypothesis. The model takes into account various strategies of economic agents, including the choice of the highest wages, the highest prestige of the profession and the best working conditions by the agent. As a result of numerical experiments, we show that the availability of various industry selection strategies and the age preferences of employers within the industry lead to periodic and complex dynamics of the number of different-aged employees. Age preferences may be a consequence, for example, the requirements of employer for the existence of work experience and education. Also, significant changes in the age structure of the employed population may result from migration.
-
Разработка вычислительной среды для математического моделирования сверхпроводящих наноструктур с магнетиком
Компьютерные исследования и моделирование, 2023, т. 15, № 5, с. 1349-1358В настоящее время основная исследовательская деятельность в области нанотехнологий направлена на создание, изучение и применение новых материалов и новых структур. Большое внимание в последнее время привлекает возможность управления магнитными свойствами с помощью сверхпроводящего тока, а также влияние магнитной динамики на вольт-амперные характеристики гибридных наноструктур типа «сверхпроводник/ферромагнетик» (S/F). В частности, к таким структурам относятся джозефсоновский S/F/S-переход или молекулярные наномагниты, связанные с джозефсоновскими переходами. Теоретические исследования динамики подобных структур неизменно приводят к моделям, расчет которых требует численного решения большого количества нелинейных уравнений. Численное моделирование гибридных наноструктур «сверхпроводник/магнетик» подразумевает расчет как магнитной динамики, так и динамики сверхпроводящей фазы, что многократно увеличивает их комплексность и масштабность, поэтому возникает задача решения сложных систем нелинейных дифференциальных уравнений, что требует значительных временных и вычислительных ресурсов.
На сегодняшний день активно развиваются алгоритмы и фреймворки для моделирования динамики намагничивания в различных структурах. Однако функционал существующих пакетов не позволяет в полной мере реализовать нужную схему вычислений.
Целью настоящей работы является разработка единой вычислительной среды для моделирования гибридных наноструктур «сверхпроводник/магнетик», предоставляющей доступ к решателям и разработанным алгоритмам, позволяющей проводить исследования сверхпроводящих элементов в наноразмерных структурах с магнетиками и гибридных квантовых материалов. В работе представлены результаты использования разрабатываемой вычислительной среды по исследованию резонансных явлений в системе наномагнита, связанного с джозефсоновским переходом. Для исследования возможности переориентации намагниченности в зависимости от параметров модели численно решалась задача Коши для системы нелинейных уравнений. Непосредственно сама вычислительная среда разрабатывалась и развернута на базе гетерогенной вычислительной платформы HybriLIT. Проведенное в рамках вычислительной среды исследование показало эффективность применения развернутого стека технологий и перспективность его использования в дальнейшем для оценки физических параметров в гибридных наноструктурах «сверхпроводник/магнетик».
Ключевые слова: численное моделирование, гибридные наноструктуры, джозефсоновские переходы, Jupyter Notebook, вычислительная среда, алгоритм, облачная платформа.
Development of a computational environment for mathematical modeling of superconducting nanostructures with a magnet
Computer Research and Modeling, 2023, v. 15, no. 5, pp. 1349-1358Now days the main research activity in the field of nanotechnology is aimed at the creation, study and application of new materials and new structures. Recently, much attention has been attracted by the possibility of controlling magnetic properties using a superconducting current, as well as the influence of magnetic dynamics on the current–voltage characteristics of hybrid superconductor/ferromagnet (S/F) nanostructures. In particular, such structures include the S/F/S Josephson junction or molecular nanomagnets coupled to the Josephson junctions. Theoretical studies of the dynamics of such structures need processes of a large number of coupled nonlinear equations. Numerical modeling of hybrid superconductor/magnet nanostructures implies the calculation of both magnetic dynamics and the dynamics of the superconducting phase, which strongly increases their complexity and scale, so it is advisable to use heterogeneous computing systems.
In the course of studying the physical properties of these objects, it becomes necessary to numerically solve complex systems of nonlinear differential equations, which requires significant time and computational resources.
The currently existing micromagnetic algorithms and frameworks are based on the finite difference or finite element method and are extremely useful for modeling the dynamics of magnetization on a wide time scale. However, the functionality of existing packages does not allow to fully implement the desired computation scheme.
The aim of the research is to develop a unified environment for modeling hybrid superconductor/magnet nanostructures, providing access to solvers and developed algorithms, and based on a heterogeneous computing paradigm that allows research of superconducting elements in nanoscale structures with magnets and hybrid quantum materials. In this paper, we investigate resonant phenomena in the nanomagnet system associated with the Josephson junction. Such a system has rich resonant physics. To study the possibility of magnetic reversal depending on the model parameters, it is necessary to solve numerically the Cauchy problem for a system of nonlinear equations. For numerical simulation of hybrid superconductor/magnet nanostructures, a computing environment based on the heterogeneous HybriLIT computing platform is implemented. During the calculations, all the calculation times obtained were averaged over three launches. The results obtained here are of great practical importance and provide the necessary information for evaluating the physical parameters in superconductor/magnet hybrid nanostructures.
-
Анализ динамической системы «жертва – хищник – суперхищник»: семейство равновесий и его разрушение
Компьютерные исследования и моделирование, 2023, т. 15, № 6, с. 1601-1615В работе исследуется динамика конечномерной модели, описывающей взаимодействие трех популяций: жертвы $x(t)$, потребляющего ее хищника $y(t)$ и суперхищника $z(t)$, питающегося обоими видами. Математически задача записывается в виде системы нелинейных дифференциальных уравнений первого порядка с правой частью $[x(1-x)-(y+z)g;\,\eta_1^{}yg-d_1^{}f-\mu_1^{}y;\,\eta_2^{}zg+d_2^{}f-\mu_2^{}z]$, где $\eta_j^{}$, $d_j^{}$, $\mu_j^{}$ ($j=1,\,2$) — положительные коэффициенты. Рассматриваемая модель относится к классу кoсимметричных динамических систем при функциональном отклике Лотки – Вольтерры $g=x$, $f=yz$ и дополнительных условиях на параметры: $\mu_2^{}=d_2^{}\left(1+\frac{\mu_1^{}}{d_1^{}}\right)$, $\eta_2^{}=d_2^{}\left(1+\frac{\eta_1^{}}{d_1^{}}\right)$. В этом случае формируется семейство равновесий в виде прямой в фазовом пространстве. Проанализирована устойчивость равновесий семейства и изолированных равновесий, построены карты существования стационарных решений и предельных циклов. Изучено разрушение семейства при нарушении условий косимметрии и использовании моделей Хoллинга $g(x)=\frac x{1+b_1^{}x}$ и Беддингтона–ДеАнгелиса $f(y,\,z)=\frac{yz}{1+b_2^{}y+b_3^{}z}$. Для этого применяется аппарат теории косимметрии В.И. Юдовича, включающий вычисление косимметрических дефектов и селективных функций. С использованием численного эксперимента проанализированы инвазивные сценарии: внедрение суперхищника в систему «хищник–жертва», выдавливание хищника или суперхищника.
A dynamic analysis of a prey – predator – superpredator system: a family of equilibria and its destruction
Computer Research and Modeling, 2023, v. 15, no. 6, pp. 1601-1615The paper investigates the dynamics of a finite-dimensional model describing the interaction of three populations: prey $x(t)$, its consuming predator $y(t)$, and a superpredator $z(t)$ that feeds on both species. Mathematically, the problem is formulated as a system of nonlinear first-order differential equations with the following right-hand side: $[x(1-x)-(y+z)g;\,\eta_1^{}yg-d_1^{}f-\mu_1^{}y;\,\eta_2^{}zg+d_2^{}f-\mu_2^{}z]$, where $\eta_j^{}$, $d_j^{}$, $\mu_j^{}$ ($j=1,\,2$) are positive coefficients. The considered model belongs to the class of cosymmetric dynamical systems under the Lotka\,--\,Volterra functional response $g=x$, $f=yz$, and two parameter constraints: $\mu_2^{}=d_2^{}\left(1+\frac{\mu_1^{}}{d_1^{}}\right)$, $\eta_2^{}=d_2^{}\left(1+\frac{\eta_1^{}}{d_1^{}}\right)$. In this case, a family of equilibria is being of a straight line in phase space. We have analyzed the stability of the equilibria from the family and isolated equilibria. Maps of stationary solutions and limit cycles have been constructed. The breakdown of the family is studied by violating the cosymmetry conditions and using the Holling model $g(x)=\frac x{1+b_1^{}x}$ and the Beddington–DeAngelis model $f(y,\,z)=\frac{yz}{1+b_2^{}y+b_3^{}z}$. To achieve this, the apparatus of Yudovich's theory of cosymmetry is applied, including the computation of cosymmetric defects and selective functions. Through numerical experimentation, invasive scenarios have been analyzed, encompassing the introduction of a superpredator into the predator-prey system, the elimination of the predator, or the superpredator.
-
Нелинейная динамика трансмембранного потенциала и pH в примембранной области клетки харовых водорослей
Компьютерные исследования и моделирование, 2009, т. 1, № 2, с. 233-239В данной работе развивается предложенная ранее модель [1] потенциалозависимого протонного переноса через мембрану клетки водоросли Chara. В предыдущем варианте модели [1] в качестве переменных рассматриваются концентрация протонов снаружи клетки и трансмембранный потенциал. В предлагаемом варианте модели вводится новая переменная - концентрация протонов в цитоплазме. При исследовании модели получены колебательная и хаотическая динамики трансмембранного потенциала. Обсуждается физиологическая роль наблюдаемых режимов.
Nonlinear dynamic of the transmembrane potential and pH along the cell membrane of Chara alga
Computer Research and Modeling, 2009, v. 1, no. 2, pp. 233-239Просмотров за год: 3. Цитирований: 1 (РИНЦ).The model of potential dependent proton transfer trough the cell membrane of Chara alga developed in [1] is considered. In the last version of the model we considered two variables: proton concentration near the surface cell and transmembrane potential. In present version we introduce the new variable — proton concentration in cytoplasm. Oscillative and chaotic dynamic of transmembrane potential was obtained in calculations. The physiological role of these patterns is discussed.
-
Математическая модель дифференциации общества с социальной напряженностью
Компьютерные исследования и моделирование, 2019, т. 11, № 5, с. 999-1012В статье моделируется развитие во времени многопартийной политической системы с учетом социальной напряженности. Предлагается система нелинейных дифференциальных уравнений относительно долей приверженцев партий и дополнительной скалярной переменной, характеризующей величину напряженности в обществе. Изменение доли каждой партии пропорционально текущему значению, умноженному на коэффициент, который состоит из притока беспартийных, перетоков членов из конкурирующих партий и убыли вследствие роста социальной напряженности. Напряженность прирастает пропорционально долям партий и снижается при их отсутствии. Число партий фиксировано, в модели отсутствуют механизмы объединения существующих или рождения новых партий.
Для исследования модели использован подход, основанный на выделении условий, при которых данная задача относится к классу косимметричных систем. Это позволяет проанализировать мультистабильность возможных динамических процессов и их разрушение при нарушении косимметрии. Существование косимметрии для системы дифференциальных уравнений обеспечивается наличием дополнительных связей на параметры, и при этом возможно возникновение непрерывных семейств стационарных и нестационарных решений. Для анализа сценариев нарушения косимметрии применяется подход на основе селективной функции. В случае с одной политической партией мультистабильности нет, каждому набору параметров соответствует только одно устойчивое решение. Для системы из двух партий показано, что возможны два семейства равновесий, а также семейство предельных циклов. Представлены результаты численных экспериментов, демонстрирующие разрушение семейств и реализацию различных сценариев, приводящих к стабилизации политической системы с сосуществованием обеих партий или к исчезновению одной из партий, когда часть населения перестает поддерживать одну из партий и становится безразличной.
Рассматриваемая модель может быть использована для прогнозирования межпартийной борьбы во время предвыборной кампании. В этом случае необходимо учитывать зависимость коэффициентов системы от времени.
Ключевые слова: моделирование социума, напряженность, дифференциальные уравнения, косимметрия, семейства равновесий, предельные циклы, мультистабильност.
Mathematical model of political differentiation under social tension
Computer Research and Modeling, 2019, v. 11, no. 5, pp. 999-1012We comsider a model of the dynamics a political system of several parties, accompanied and controlled by the growth of social tension. A system of nonlinear ordinary differential equations is proposed with respect to fractions and an additional scalar variable characterizing the magnitude of tension in society the change of each party is proportional to the current value multiplied by a coefficient that consists of an influx of novice, a flow from competing parties, and a loss due to the growth of social tension. The change in tension is made up of party contributions and own relaxation. The number of parties is fixed, there are no mechanisms in the model for combining existing or the birth of new parties.
To study of possible scenarios of the dynamic processes of the model we derive an approach based on the selection of conditions under which this problem belongs to the class of cosymmetric systems. For the case of two parties, it is shown that in the system under consideration may have two families of equilibria, as well as a family of limit cycles. The existence of cosymmetry for a system of differential equations is ensured by the presence of additional constraints on the parameters, and in this case, the emergence of continuous families of stationary and nonstationary solutions is possible. To analyze the scenarios of cosymmetry breaking, an approach based on the selective function is applied. In the case of one political party, there is no multistability, one stable solution corresponds to each set of parameters. For the case of two parties, it is shown that in the system under consideration may have two families of equilibria, as well as a family of limit cycles. The results of numerical experiments demonstrating the destruction of the families and the implementation of various scenarios leading to the stabilization of the political system with the coexistence of both parties or to the disappearance of one of the parties, when part of the population ceases to support one of the parties and becomes indifferent are presented.
This model can be used to predict the inter-party struggle during the election campaign. In this case necessary to take into account the dependence of the coefficients of the system on time.
-
Математическое моделирование оптимального рынка конкурирующих товаров в условиях лага поставок
Компьютерные исследования и моделирование, 2012, т. 4, № 2, с. 431-450Предлагается нелинейная рестриктивная (подчиняющаяся ограничениям типа неравенств) динамическая математическая модель свободного рынка многих товаров в условиях лага поставок товаров на рынок и линейной зависимости вектора спроса от вектора цен. Ставится задача отыскания оптимальных с точки зрения прибыли продавца цен и поставок товаров на рынок. Показано, что максимальная суммарная прибыль продавца выражается непрерывной кусочногладкой функцией вектора объемов поставок с разрывом производных на границах зон товарного дефицита, затоваривания и динамического равновесия рынка по каждому из товаров. С использованием аппарата предикатных функций построен вычислительный алгоритм оптимизации поставок товаров на рынок.
Ключевые слова: математическое моделирование, рынок многих товаров, цена, спрос, предложение, лаг поставок, дискретное время, динамика, нелинейность, прибыль продавца, кусочная гладкость, алгоритм оптимизации.
Mathematical modeling of the optimal market of competing goods in conditions of deliveries lags
Computer Research and Modeling, 2012, v. 4, no. 2, pp. 431-450Просмотров за год: 1. Цитирований: 3 (РИНЦ).The nonlinear restrictive (with restrictions of the inequalities type) dynamic mathematical model of the committed competition vacant market of many goods in conditions of the goods deliveries time-lag and of the linear dependency of the demand vector from the prices vector is offered. The problem of finding of prices and deliveries of goods into the market which are optimal (from seller’s profit standpoint) is formulated. It is shown the seller’s total profit maximum is expressing by the continuous piecewise smooth function of vector of volumes of deliveries with breakup of the derivative on borders of zones of the goods deficit, of the overstocking and of the dynamic balance of demand and offer of each of goods. With use of the predicate functions technique the computing algorithm of optimization of the goods deliveries into the market is built.
Журнал индексируется в Scopus
Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"