Текущий выпуск Номер 3, 2025 Том 17

Все выпуски

Результаты поиска по 'modelling':
Найдено статей: 832
  1. Лукьянцев Д.С., Афанасьев Н.Т., Танаев А.Б., Чудаев С.О.
    Численно-аналитическое моделирование гравитационного линзирования электромагнитных волн в случайно-неоднородной космической плазме
    Компьютерные исследования и моделирование, 2024, т. 16, № 2, с. 433-443

    Для интерпретации данных измерений астрофизических прецизионных инструментов нового поколения разработан аппарат численно-аналитического моделирования характеристик распространения электромагнитных волн в хаотической космической плазме с учетом эффектов гравитации. Задача распространения волн в искривленном (римановом) пространстве решена в евклидовом пространстве путем введения эффективного показателя преломления вакуума, выраженного через потенциал тяготения. Задавая различные модели плотности распределения массы астрофизических объектов и решая уравнение Пуассона, можно рассчитать гравитационный потенциал и вычислить эффективный показатель преломления вакуума. В предположении аддитивности вкладов различных объектов в общее гравитационное поле предложена приближенная модель эффективного показателя преломления. Считая пространственные масштабы показателя преломления много больше длины волны, расчет характеристик электромагнитных волн в поле тяготения астрофизических объектов проводится в приближении геометрической оптики. В основу численно-аналитического аппарата моделирования траекторных характеристик волн положены лучевые дифференциальные уравнения в форме Эйлера. Хаотические неоднородности космической плазмы заданы моделью пространственной корреляционной функции показателя преломления. Расчеты рефракционного рассеяния волн выполнены в приближении метода возмущений. Получены интегральные выражения для статистических моментов боковых отклонений лучей в картинной плоскости наблюдателя. С помощью аналитических преобразований интегралы для моментов сведены к системе обыкновенных дифференциальных уравнений первого порядка для совместного численного расчета средних и среднеквадратичных отклонений лучей. Приведены результаты численно-аналитического моделирования траекторной картины распространения электромагнитных волн в межзвездной среде с учетом воздействий полей тяготения космических объектов и рефракционного рассеяния волн на неоднородностях показателя преломления окружающей плазмы. На основе результатов моделирования сделана количественная оценка условий стохастического замывания эффектов гравитационного линзирования электромагнитных волн в различных частотных диапазонах. Показано, что рабочие частоты метрового диапазона длин волн представляют собой условную низкочастотную границу для наблюдений эффекта гравитационного линзирования в стохастической космической плазме. Предложенный аппарат численно-аналитического моделирования можно использовать для анализа структуры электромагнитного излучения квазаров, прошедшего группу галактик.

    Lukyantsev D.S., Afanasiev N.T., Tanaev A.B., Chudaev S.O.
    Numerical-analytical modeling of gravitational lensing of the electromagnetic waves in random-inhomogeneous space plasma
    Computer Research and Modeling, 2024, v. 16, no. 2, pp. 433-443

    Instrument of numerical-analytical modeling of characteristics of propagation of electromagnetic waves in chaotic space plasma with taking into account effects of gravitation is developed for interpretation of data of measurements of astrophysical precision instruments of new education. The task of propagation of waves in curved (Riemann’s) space is solved in Euclid’s space by introducing of the effective index of refraction of vacuum. The gravitational potential can be calculated for various model of distribution of mass of astrophysical objects and at solution of Poisson’s equation. As a result the effective index of refraction of vacuum can be evaluated. Approximate model of the effective index of refraction is suggested with condition that various objects additively contribute in total gravitational field. Calculation of the characteristics of electromagnetic waves in the gravitational field of astrophysical objects is performed by the approximation of geometrical optics with condition that spatial scales of index of refraction a lot more wavelength. Light differential equations in Euler’s form are formed the basis of numerical-analytical instrument of modeling of trajectory characteristic of waves. Chaotic inhomogeneities of space plasma are introduced by model of spatial correlation function of index of refraction. Calculations of refraction scattering of waves are performed by the approximation of geometrical optics. Integral equations for statistic moments of lateral deviations of beams in picture plane of observer are obtained. Integrals for moments are reduced to system of ordinary differential equations the firsts order with using analytical transformations for cooperative numerical calculation of arrange and meansquare deviations of light. Results of numerical-analytical modeling of trajectory picture of propagation of electromagnetic waves in interstellar space with taking into account impact of gravitational fields of space objects and refractive scattering of waves on inhomogeneities of index of refraction of surrounding plasma are shown. Based on the results of modeling quantitative estimation of conditions of stochastic blurring of the effect of gravitational lensing of electromagnetic waves at various frequency ranges is performed. It’s shown that operating frequencies of meter range of wavelengths represent conditional low-frequency limit for observational of the effect of gravitational lensing in stochastic space plasma. The offered instrument of numerical-analytical modeling can be used for analyze of structure of electromagnetic radiation of quasar propagating through group of galactic.

  2. Калитин К.Ю., Невзоров А.А., Спасов А.А., Муха О.Ю.
    Распознавание эффектов и механизма действия препаратов на основе анализа внутричерепной ЭЭГ с помощью методов глубокого обучения
    Компьютерные исследования и моделирование, 2024, т. 16, № 3, с. 755-772

    Прогнозирование новых свойств лекарственных средств является основной задачей в рамках решения проблем полифармакологии, репозиционирования, а также изучения биологически активных веществ на доклиническом этапе. Идентификация фармакологических эффектов и взаимодействий «препарат – мишень» с использованием машинного обучения (включая методы глубокого обучения) набирает популярность в последние годы.

    Цель работы состояла в разработке метода распознавания психотропных эффектов и механизма действия (взаимодействий препарата с мишенью) на основании анализа биоэлектрической активности мозга с применением технологий искусственного интеллекта.

    Выполнялась регистрация электроэнцефалографических (ЭЭГ) сигналов крыс (4 канала, частота дискретизации — 500 Гц) после введения психотропных препаратов (габапентин, диазепам, карбамазепин, прегабалин, эсликарбазепин, феназепам, ареколин, коразол, пикротоксин, пилокарпин, хлоралгидрат). Сигналы (эпохи продолжительностью 2 с) преобразовывались в изображения $(2000 \times 4)$ и затем поступали на вход автоэнкодера. Выходные данные слоя «бутылочного горлышка» классифицировались и кластеризовались (с применением алгоритма t-SNE), а затем вычислялись расстояния между кластерами в пространстве параметров. В качестве альтернативны использовался подход, основанный на извлечении признаков с размерной редукцией при помощи метода главных компонент и классификацией методом опорных векторов с ядерной функцией (kSVM). Модели валидировались путем 5-кратной кроссвалидации.

    Точность классификации для 11 препаратов, полученная в ходе кросс-валидации, достигала $0,580 \pm 0,021$, что значительно превышает точность случайного классификатора, которая составляла $0,091 \pm 0,045$ $(p < 0,0001)$, и точность kSVM, равную $0,441 \pm 0,035$ $(p < 0,05)$. Получены t-SNE-карты параметров «бутылочного горлышка» сигналов интракраниальной ЭЭГ. Определена относительная близость кластеров сигналов в параметрическом пространстве.

    В настоящем исследовании представлен оригинальный метод биопотенциал-опосредованного прогнозирования эффектов и механизма действия (взаимодействия лекарственного средства с мишенью). Метод использует сверточные нейронные сети в сочетании с модифицированным алгоритмом избирательной редукции параметров. ЭЭГ-сигналы, зарегистрированные после введения препаратов, были представлены в едином пространстве параметров в сжатой форме. Полученные данные указывают на возможность распознавания паттернов нейронального отклика в ответ на введение различных психотропных препаратов с помощью предложенного нейросетевого классификатора и кластеризации.

    Kalitin K.Y., Nevzorov A.A., Spasov A.A., Mukha O.Y.
    Deep learning analysis of intracranial EEG for recognizing drug effects and mechanisms of action
    Computer Research and Modeling, 2024, v. 16, no. 3, pp. 755-772

    Predicting novel drug properties is fundamental to polypharmacology, repositioning, and the study of biologically active substances during the preclinical phase. The use of machine learning, including deep learning methods, for the identification of drug – target interactions has gained increasing popularity in recent years.

    The objective of this study was to develop a method for recognizing psychotropic effects and drug mechanisms of action (drug – target interactions) based on an analysis of the bioelectrical activity of the brain using artificial intelligence technologies.

    Intracranial electroencephalographic (EEG) signals from rats were recorded (4 channels at a sampling frequency of 500 Hz) after the administration of psychotropic drugs (gabapentin, diazepam, carbamazepine, pregabalin, eslicarbazepine, phenazepam, arecoline, pentylenetetrazole, picrotoxin, pilocarpine, chloral hydrate). The signals were divided into 2-second epochs, then converted into $2000\times 4$ images and input into an autoencoder. The output of the bottleneck layer was subjected to classification and clustering using t-SNE, and then the distances between resulting clusters were calculated. As an alternative, an approach based on feature extraction with dimensionality reduction using principal component analysis and kernel support vector machine (kSVM) classification was used. Models were validated using 5-fold cross-validation.

    The classification accuracy obtained for 11 drugs during cross-validation was $0.580 \pm 0.021$, which is significantly higher than the accuracy of the random classifier $(0.091 \pm 0.045, p < 0.0001)$ and the kSVM $(0.441 \pm 0.035, p < 0.05)$. t-SNE maps were generated from the bottleneck parameters of intracranial EEG signals. The relative proximity of the signal clusters in the parametric space was assessed.

    The present study introduces an original method for biopotential-mediated prediction of effects and mechanism of action (drug – target interaction). This method employs convolutional neural networks in conjunction with a modified selective parameter reduction algorithm. Post-treatment EEGs were compressed into a unified parameter space. Using a neural network classifier and clustering, we were able to recognize the patterns of neuronal response to the administration of various psychotropic drugs.

  3. Пантелеев М.А., Бершадский Е.С., Шибеко А.М., Нечипуренко Д.Ю.
    Актуальные проблемы компьютерного моделирования тромбоза, фибринолиза и тромболизиса
    Компьютерные исследования и моделирование, 2024, т. 16, № 4, с. 975-995

    Система гемостаза представляет собой одну из ключевых защитных систем организма, которая присутствует практически во всех его жидких тканях, но наиболее важна в крови. Она активируется при различных повреждениях стенки сосуда, и взаимодействие ее специализированных клеток и гуморальных систем приводит сначала к формированию гемостатического сгустка, останавливающего потерю крови, а затем к постепенному растворению этого сгустка. Образование гемостатического тромба — уникальный с точки зрения физиологии процесс, так как за время порядка минуты система гемостаза образует сложные структуры, имеющие пространственный масштаб от микрометров (в случае повреждения микрососудов или стыков между отдельными эндотелиальными клетками) до сантиметра (в случае повреждения крупных магистральных артерий). Гемостатический ответ зависит от множества скоординированных и параллельно идущих процессов, включающих адгезию тромбоцитов, их активацию, агрегацию, секрецию различных гранул, изменение формы, состава внешней части липидного бислоя, контракцию тромба и образование фибриновой сети в результате работы каскада свертывания крови. Компьютерное моделирование представляет собой мощный инструмент для исследования этой сложной системы и решения практических задач в этой области на разных уровнях организации: от внутриклеточной сигнализации в тромбоцитах, моделирования гуморальных систем свертывания крови и фибринолиза и до разработки многомасштабных моделей тромбообразования. Проблемы, связанные с компьютерным моделированием биологических процессов, можно разделить на две основные категории: отсутствие адекватного физико-математического описания имеющихся в литературе экспериментальных данных из-за сложности биологических систем (проблема отсутствия адекватной теоретической модели биологических процессов) и проблема высокой вычислительной сложности некоторых моделей, которая не позволяет применять их для исследования физиологически интересных сценариев. Здесь мы рассмотрим как некоторые принципиальные проблемы в области моделирования свертывания крови, которые до сих пор остаются нерешенными, так и прогресс в экспериментальных исследованиях гемостаза и тромбоза, ведущий к пересмотру многих ранее принятых представлений, что необходимо отразить в новых компьютерных моделях этих процессов. Особое внимание будет уделено нюансам артериального, венозного и микрососудистого тромбоза, а также проблемам фибринолиза и тромболизиса. В обзоре также кратко обсуждаются основные типы используемых математических моделей, их сложность с точки зрения вычислений, а также принципиальные вопросы, связанные с возможностью описания процессов тромбообразования в артериях.

    Panteleev M.A., Bershadsky E.S., Shibeko A.M., Nechipurenko D.Y.
    Current issues in computational modeling of thrombosis, fibrinolysis, and thrombolysis
    Computer Research and Modeling, 2024, v. 16, no. 4, pp. 975-995

    Hemostasis system is one of the key body’s defense systems, which is presented in all the liquid tissues and especially important in blood. Hemostatic response is triggered as a result of the vessel injury. The interaction between specialized cells and humoral systems leads to the formation of the initial hemostatic clot, which stops bleeding. After that the slow process of clot dissolution occurs. The formation of hemostatic plug is a unique physiological process, because during several minutes the hemostatic system generates complex structures on a scale ranging from microns for microvessel injury or damaged endothelial cell-cell contacts, to centimeters for damaged systemic arteries. Hemostatic response depends on the numerous coordinated processes, which include platelet adhesion and aggregation, granule secretion, platelet shape change, modification of the chemical composition of the lipid bilayer, clot contraction, and formation of the fibrin mesh due to activation of blood coagulation cascade. Computer modeling is a powerful tool, which is used to study this complex system at different levels of organization. This includes study of intracellular signaling in platelets, modelling humoral systems of blood coagulation and fibrinolysis, and development of the multiscale models of thrombus growth. There are two key issues of the computer modeling in biology: absence of the adequate physico-mathematical description of the existing experimental data due to the complexity of the biological processes, and high computational complexity of the models, which doesn’t allow to use them to test physiologically relevant scenarios. Here we discuss some key unresolved problems in the field, as well as the current progress in experimental research of hemostasis and thrombosis. New findings lead to reevaluation of the existing concepts and development of the novel computer models. We focus on the arterial thrombosis, venous thrombosis, thrombosis in microcirculation and the problems of fibrinolysis and thrombolysis. We also briefly discuss basic types of the existing mathematical models, their computational complexity, and principal issues in simulation of thrombus growth in arteries.

  4. Марченко Л.Н., Косенок Я.А., Гайшун В.Е., Бруттан Ю.В.
    Моделирование реологических характеристик водных суспензий на основе наноразмерных частиц диоксида кремния
    Компьютерные исследования и моделирование, 2024, т. 16, № 5, с. 1217-1252

    Реологическое поведение водных суспензий на основе наноразмерных частиц диоксида кремния сильно зависит от динамической вязкости, которая непосредственно влияет на применение наножидкостей. Целью данной работы являются разработка и валидация моделей для прогнозирования динамической вязкости от независимых входных параметров: концентрации диоксида кремния SiO2, кислотности рН, а также скорости сдвига $\gamma$. Проведен анализ влияния состава суспензии на ее динамическую вязкость. Выявлены статистически однородные по составу группы суспензий, в рамках которых возможна взаимозаменяемость составов. Показано, что при малых скоростях сдвига реологические свойства суспензий существенно отличаются от свойств, полученных на более высоких скоростях. Установлены значимые положительные корреляции динамической вязкости суспензии с концентрацией SiO2 и кислотностью рН, отрицательные — со скоростью сдвига $\gamma$. Построены регрессионные модели с регуляризацией зависимости динамической вязкости $\eta$ от концентраций SiO2, NaOH, H3PO4, ПАВ (поверхностно-активное вещество), ЭДА (этилендиамин), скорости сдвига $\gamma$. Для более точного прогнозирования динамической вязкости были обучены модели с применением алгоритмов нейросетевых технологий и машинного обучения (многослойного перцептрона MLP, сети радиальной базисной функции RBF, метода опорных векторов SVM, метода случайного леса RF). Эффективность построенных моделей оценивалась с использованием различных статистических метрик, включая среднюю абсолютную ошибку аппроксимации (MAE), среднюю квадратическую ошибку (MSE), коэффициент детерминации $R^2$, средний процент абсолютного относительного отклонения (AARD%). Модель RF показала себя как лучшая модель на обучающей и тестовой выборках. Определен вклад каждой компоненты в построенную модель, показано, что наибольшее влияние на динамическую вязкость оказывает концентрация SiO2, далее кислотность рН и скорость сдвига $\gamma$. Точность предлагаемых моделей сравнивается с точностью ранее опубликованных в литературе моделей. Результаты подтверждают, что разработанные модели можно рассматривать как практический инструмент для изучения поведения наножидкостей, в которых используются водные суспензии на основе наноразмерных частиц диоксида кремния.

    Marchanko L.N., Kasianok Y.A., Gaishun V.E., Bruttan I.V.
    Modeling of rheological characteristics of aqueous suspensions based on nanoscale silicon dioxide particles
    Computer Research and Modeling, 2024, v. 16, no. 5, pp. 1217-1252

    The rheological behavior of aqueous suspensions based on nanoscale silicon dioxide particles strongly depends on the dynamic viscosity, which affects directly the use of nanofluids. The purpose of this work is to develop and validate models for predicting dynamic viscosity from independent input parameters: silicon dioxide concentration SiO2, pH acidity, and shear rate $\gamma$. The influence of the suspension composition on its dynamic viscosity is analyzed. Groups of suspensions with statistically homogeneous composition have been identified, within which the interchangeability of compositions is possible. It is shown that at low shear rates, the rheological properties of suspensions differ significantly from those obtained at higher speeds. Significant positive correlations of the dynamic viscosity of the suspension with SiO2 concentration and pH acidity were established, and negative correlations with the shear rate $\gamma$. Regression models with regularization of the dependence of the dynamic viscosity $\eta$ on the concentrations of SiO2, NaOH, H3PO4, surfactant (surfactant), EDA (ethylenediamine), shear rate γ were constructed. For more accurate prediction of dynamic viscosity, the models using algorithms of neural network technologies and machine learning (MLP multilayer perceptron, RBF radial basis function network, SVM support vector method, RF random forest method) were trained. The effectiveness of the constructed models was evaluated using various statistical metrics, including the average absolute approximation error (MAE), the average quadratic error (MSE), the coefficient of determination $R^2$, and the average percentage of absolute relative deviation (AARD%). The RF model proved to be the best model in the training and test samples. The contribution of each component to the constructed model is determined. It is shown that the concentration of SiO2 has the greatest influence on the dynamic viscosity, followed by pH acidity and shear rate γ. The accuracy of the proposed models is compared to the accuracy of models previously published. The results confirm that the developed models can be considered as a practical tool for studying the behavior of nanofluids, which use aqueous suspensions based on nanoscale particles of silicon dioxide.

  5. Белотелов Н.В., Сушко Д.А.
    Агентная модель социальной динамики с использованием подходов роевого интеллекта
    Компьютерные исследования и моделирование, 2024, т. 16, № 6, с. 1513-1527

    В работе рассматривается применение технологии роевого интеллекта для построения агентных имитационных моделей. В качестве примера построена минимальная модель, иллюстрирующая влияние информационных воздействий на правила поведения агентов в простейшей модели конкуренции между двумя популяциями, агенты которых выполняют простейшую задачу переноса ресурса из подвижного источника на свою территорию. Алгоритм движения агентов в пространстве модели реализован на основе классического алгоритма роя частиц. Агенты имеют жизненный цикл, то есть учитываются процессы рождения и гибели. В модели учитываются информационные процессы, которые определяют целевые функции поведения вновь появившихся агентов. Эти процессы (обучение и переманивание) определяются информационными воздействиями со стороны популяций. При определенных условиях в системе агентов возникает третья популяция. Агенты такой популяции информационно воздействуют на агентов остальных популяций в некотором радиусе вокруг себя, изменяя их правила поведения в соответствии со своими, что в определенных условиях вытесняет остальные популяции.

    В результате проведенных имитационных экспериментов было показано, что в системе реализуются следующие финальные состояния: вытеснение новой популяцией остальными, сосуществование новой популяции и остальных популяций и отсутствие такой популяции. Было показано, что с увеличением радиуса влияния агентов популяция с измененными правилами поведения вытесняет все остальные. Также показано, что в случае труднодоступного ресурса стратегия переманивания агентов конкурирующей популяции более выгодна.

    Belotelov N.V., Sushko D.A.
    An agent-based model of social dynamics using swarm intelligence approaches
    Computer Research and Modeling, 2024, v. 16, no. 6, pp. 1513-1527

    The paper considers the application of swarm intelligence technology to build agent-based simulation models. As an example, a minimal model is constructed illustrating the influence of information influences on the rules of behavior of agents in the simplest model of competition between two populations, whose agents perform the simplest task of transferring a resource from a mobile source to their territory. The algorithm for the movement of agents in the model space is implemented on the basis of the classical particle swarm algorithm. Agents have a life cycle, that is, the processes of birth and death are taken into account. The model takes into account information processes that determine the target functions of the behavior of newly appeared agents. These processes (training and poaching) are determined by information influences from populations. Under certain conditions, a third population arises in the agent system. Agents of such a population informatively influence agents of other populations in a certain radius around themselves, changing.

    As a result of the conducted simulation experiments, it was shown that the following final states are realized in the system: displacement of a new population by others, coexistence of a new population and other populations and the absence of such a population. It has been shown that with an increase in the radius of influence of agents, the population with changed rules of behavior displaces all others. It is also shown that in the case of a hard-to-access resource, the strategy of luring agents of a competing population is more profitable.

  6. Оконича О., Садовых А.
    Автоматизированная проверка соответствия соглашений об обработке данных регламенту по защите данных
    Компьютерные исследования и моделирование, 2024, т. 16, № 7, с. 1667-1685

    В современном мире соблюдение нормативных требований по защите данных, таких как GDPR, является ключевым для организаций. Другой важной проблемой, выявленной при анализе, является то, что соблюдение осложняется сложностью правовых документов и постоянными изменениями в регулировании. В данной статье описываются способы, с помощью которых NLP (обработка естественного языка) способствует упрощению соблюдения GDPR путем автоматического сканирования на соответствие, оценки политик конфиденциальности и повышения уровня прозрачности. Работа не ограничивается исследованием применения NLP для работы с политиками конфиденциальности и улучшения понимания обмена данными с третьими сторонами, но также проводит предварительные исследования для оценки различий между несколькими моделями NLP. В статье описывается реализация и исполнение моделей для выявления той, которая демонстрирует наилучшую производительность по эффективности и скорости автоматизации процесса проверки соответствия и анализа политики конфиденциальности. Кроме того, в исследовании обсуждаются возможности использования автоматических инструментов и анализа данных для соблюдения GDPR, например, создание машиночитаемых моделей, которые помогают в оценке соответствия. Среди моделей, оцененных в нашем исследовании, SBERT показала лучшие результаты на уровне политики с точностью 0,57, прецизионностью 0,78, полнотой 0,83 и F1-метрикой 0,80. Модель BERT продемонстрировала наивысшую производительность на уровне предложений, достигнув точности 0,63, прецизионности 0,70, полноты 0,50 и F1-метрики 0,55. Таким образом, данная статья подчеркивает важность NLP в помощи организациям преодолеть трудности соблюдения GDPR, создавая дорожную карту к более ориентированному на клиента режиму защиты данных. В этом отношении, сравнивая предварительные исследования и демонстрируя производительность лучших моделей, работа способствует усилению мер по соблюдению и защите прав личности в киберпространстве.

    Okonicha O., Sadovykh A.
    NLP-based automated compliance checking of data processing agreements against General Data Protection Regulation
    Computer Research and Modeling, 2024, v. 16, no. 7, pp. 1667-1685

    As it stands in the contemporary world, compliance with regulations concerning data protection such as GDPR is central to organizations. Another important issue analysis identified is the fact that compliance is hampered by the fact that legal documents are often complex and that regulations are ever changing. This paper aims to describe the ways in which NLP aids in keeping GDPR compliance effortless through automated scanning for compliance, evaluating privacy policies, and increasing the level of transparency. The work does not only limit to exploring the application of NLP for dealing with the privacy policies and facilitate better understanding of the third-party data sharing but also proceed to perform the preliminary studies to evaluate the difference of several NLP models. They implement and execute the models to distinguish the one that performs the best based on the efficiency and speed at which it automates the process of compliance verification and analyzing the privacy policy. Moreover, some of the topics discussed in the research deal with the possibility of using automatic tools and data analysis to GDPR, for instance, generation of the machine readable models that assist in evaluation of compliance. Among the evaluated models from our studies, SBERT performed best at the policy level with an accuracy of 0.57, precision of 0.78, recall of 0.83, and F1-score of 0.80. BERT showed the highest performance at the sentence level, achieving an accuracy of 0.63, precision of 0.70, recall of 0.50, and F1-score of 0.55. Therefore, this paper emphasizes the importance of NLP to help organizations overcome the difficulties of GDPR compliance, create a roadmap to a more client-oriented data protection regime. In this regard, by comparing preliminary studies done in the test and showing the performance of the better model, it helps enhance the measures taken in compliance and fosters the defense of individual rights in the cyberspace.

  7. Сааде М.Г.
    Моделирование влияния распространения эпидемии и карантина на экономику
    Компьютерные исследования и моделирование, 2025, т. 17, № 2, с. 339-363

    Эпидемии серьезно дестабилизируют экономику, снижая производительность, ослабляя потребительскую активность и перегружая общественные ресурсы, что часто приводит к экономическим кризисам. Пандемия COVID-19 продемонстрировала ключевую роль нематериальных мер, таких как карантин, в сдерживании распространения инфекционных заболеваний. Данное исследование изучает, как развитие эпидемии и введение карантинных мер влияют на экономическое благополучие населения. С помощью компартментальных моделей на основе обыкновенных дифференциальных уравнений (ОДУ) анализируется взаимосвязь между динамикой заболевания и экономическими последствиями, особенно фокусируясь на том, как различные строгости карантина воздействуют как на распространение болезни, так и на благосостояние населения. Результаты показывают, что эпидемии наносят значительный экономический ущерб, однако своевременные и строгие карантинные меры могут снизить нагрузку на систему здравоохранения, резко уменьшая пик заражений и замедляя развитие эпидемии. Тем не менее, стратегически продуманное ослабление карантина не менее важно для предотвращения повторных вспышек. Исследование выявляет ключевые эпидемиологические пороговые значения, такие как скорость передачи, уровень выздоровления и базовое репродуктивное число $(\mathfrak{R}_0)$, которые определяют эффективность карантина. Аналитически определяется оптимальная доля изолированных лиц, необходимая для минимизации общего числа заражений в условиях постоянного иммунитета. С экономической точки зрения, влияние карантина оценивается через динамику благосостояния населения: показано, что экономические последствия зависят от доли изолированных, но сохраняющих экономическую активность граждан. Чем выше эта доля, тем лучше сохраняется благосостояние даже при фиксированных эпидемиологических параметрах. Эти выводы предоставляют властям практические рекомендации для разработки сбалансированных карантинных стратегий, способных сдерживать распространение болезней и одновременно защищать экономическую стабильность в будущих кризисах.

    Saade M.G.
    Modeling the impact of epidemic spread and lockdown on economy
    Computer Research and Modeling, 2025, v. 17, no. 2, pp. 339-363

    Epidemics severely destabilize economies by reducing productivity, weakening consumer spending, and overwhelming public infrastructure, often culminating in economic recessions. The COVID-19 pandemic underscored the critical role of nonpharmaceutical interventions, such as lockdowns, in containing infectious disease transmission. This study investigates how the progression of epidemics and the implementation of lockdown policies shape the economic well-being of populations. By integrating compartmental ordinary differential equation (ODE) models, the research analyzes the interplay between epidemic dynamics and economic outcomes, particularly focusing on how varying lockdown intensities influence both disease spread and population wealth. Findings reveal that epidemics inflict significant economic damage, but timely and stringent lockdowns can mitigate healthcare system overload by sharply reducing infection peaks and delaying the epidemic’s trajectory. However, carefully timed lockdown relaxation is equally vital to prevent resurgent outbreaks. The study identifies key epidemiological thresholds—such as transmission rates, recovery rates, and the basic reproduction number $(\mathfrak{R}0)$ — that determine the effectiveness of lockdowns. Analytically, it pinpoints the optimal proportion of isolated individuals required to minimize total infections in scenarios where permanent immunity is assumed. Economically, the analysis quantifies lockdown impacts by tracking population wealth, demonstrating that economic outcomes depend heavily on the fraction of isolated individuals who remain economically productive. Higher proportions of productive individuals during lockdowns correlate with better wealth retention, even under fixed epidemic conditions. These insights equip policymakers with actionable frameworks to design balanced lockdown strategies that curb disease spread while safeguarding economic stability during future health crises.

  8. Погребная А.Ф.
    Синтез АТФ F1-АТФазой в стохастической модели
    Компьютерные исследования и моделирование, 2009, т. 1, № 2, с. 217-223

    Данная работа является продолжением цикла работ [1-4], посвященных построению математической модели вращающегося молекулярного мотора F1-АТФазы. В данной работе в рамках представленной ранее модели рассматривается синтез АТФ при вращении ротора молекулярного мотора под действием внешней силы.

    Ключевые слова: АТФ, АТФаза, внешняя сила.
    Pogrebnaya A.F.
    Synthesis of ATP by F1-ATPase in stochastic model
    Computer Research and Modeling, 2009, v. 1, no. 2, pp. 217-223

    The paper continues our series of papers [1-4] devoted to the development of mathematical model on rotation of F1-AТPase molecular motor. Here it has been considered the synthesis of ATP induced by external force applied to the rotor.

    Просмотров за год: 2. Цитирований: 1 (РИНЦ).
  9. Хораськина Ю.С., Комаров А.С., Безрукова М.Г., Жиянски М.К.
    Моделирование динамики кальция в органических горизонтах почвы
    Компьютерные исследования и моделирование, 2010, т. 2, № 1, с. 103-110

    В данной работе представлены результаты моделирования круговорота кальция в лесных экосистемах. Кальций является одним из основных элементов минерального питания растений, регулирующим разные метаболические процессы. Его недостаток вызывает нарушения роста тканей растений. Увеличение дефицита кальция в лесных экосистемах появляется вследствие усиления кислотной нагрузки или отчуждения биомассы при вырубках. Модель представляет собой описание круговорота на основе потока вещества между пулами, включая подробное описание почвенной части круговорота – трансформация и минерализация подстилки и др. Для калибровки модели использовались экспериментальные данные по еловым лесам Болгарии.

    Khoraskina Y.S., Komarov A.S., Bezrukova M.G., Zhiyanski M.K.
    Modeling of calcium dynamics in soil organic layers
    Computer Research and Modeling, 2010, v. 2, no. 1, pp. 103-110

    Calcium is a major nutrient regulating metabolism in a plant. Deficiency of calcium results in a growth decline of plant tissues. Ca may be lost from forest soils due to acidic atmospheric deposition and tree harvesting. Plant-available calcium compounds are in the soil cation exchange complex and soil waters. Model of soil calcium dynamics linking it with the model of soil organic matter dynamics ROMUL in forest ecosystems is developed. ROMUL describes the mineralization and humification of the fraction of fresh litter which is further transformed into complex of partially humified substance (CHS) and then to stable humus (H) in dependence on temperature, soil moisture and chemical composition of the fraction (nitrogen, lignin and ash contents, pH). Rates of decomposition and humification being coefficients in the system of ordinary differential equations are evaluated using laboratory experiments and verified on a set of field experiments. Model of soil calcium dynamics describes calcium flows between pools of soil organic matter. Outputs are plant nutrition, leaching, synthesis of secondary minerals. The model describes transformation and mineralization of forest floor in detail. Experimental data for calibration model was used from spruсe forest of Bulgaria.

    Просмотров за год: 1.
  10. Федорова Е.А.
    Математическая модель оптимизации с учетом нескольких критериев качества
    Компьютерные исследования и моделирование, 2011, т. 3, № 4, с. 489-502

    Проведение эффективной региональной политики с целью стабилизации производства невозможно без анализа динамики протекающих экономических процессов. Данная статья посвящена разработке математической модели, отражающей взаимодействие нескольких экономических агентов с учетом их интересов. Разработка такой модели и ее исследование может рассматриваться в качестве важного шага в решении теоретических и практических проблем управления экономическим ростом.

    Fedorova E.A.
    The mathematical optimization model based on several quality criteria
    Computer Research and Modeling, 2011, v. 3, no. 4, pp. 489-502

    An effective regional policy in order to stabilize production is impossible without an analysis of the dynamics of economic processes taking place. This article focuses on developing a mathematical model reflecting the interaction of several economic agents with regard to their interests. Developing such a model and its study can be considered as an important step in solving theoretical and practical problems of managing growth.

    Просмотров за год: 7.
Страницы: « первая предыдущая следующая последняя »

Журнал индексируется в Scopus

Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"

Международная Междисциплинарная Конференция МАТЕМАТИКА. КОМПЬЮТЕР. ОБРАЗОВАНИЕ.