Все выпуски
- 2025 Том 17
- 2024 Том 16
- 2023 Том 15
- 2022 Том 14
- 2021 Том 13
- 2020 Том 12
- 2019 Том 11
- 2018 Том 10
- 2017 Том 9
- 2016 Том 8
- 2015 Том 7
- 2014 Том 6
- 2013 Том 5
- 2012 Том 4
- 2011 Том 3
- 2010 Том 2
- 2009 Том 1
-
Моделирование взаимодействия стенки канала с упругозакрепленным торцевым уплотнением
Компьютерные исследования и моделирование, 2020, т. 12, № 2, с. 387-400В работе предложена новая математическая модель для исследования динамики взаимодействия продольной стенки узкого канала с его торцевым уплотнением — торцевой стенкой, имеющей упругое закрепление. В рамках данной модели взаимодействие указанных стенок происходит через слой вязкой жидкости, заполняющей канал, и ранее не исследовалось. Это потребовало постановки и решения задачи гидроупругости. Поставленная задача состоит из уравнений Навье–Стокса, уравнения неразрывности, уравнения динамики торцевой стенки как одномассовой модели и соответствующих краевых условий. На первом этапе задача исследована при ползучем течении. На втором этапе исследования данное ограничение снимается и, при использовании метода итераций, осуществлено обобщение исходной задачи с учетом инерции движения жидкости. Решение сформулированной задачи позволило определить законы распределения скоростей и давления в слое жидкости, а также закон движения торцевой стенки. Показано, что при ползучем течении физические свойства слоя жидкости и геометрические размеры канала полностью определяют демпфирование в рассматриваемой колебательной системе. При этом на демпфирующие свойства слоя жидкости оказывает влияние как скорость движения торцевой стенки, так и скорость движения продольной стенки. Найдены выражения для коэффициентов демпфирования слоя жидкости в продольном и поперечном направлении. При учете сил инерции жидкости выявлено их влияние на колебания торцевой стенки, проявляющиеся в виде двух присоединенных масс в уравнении ее движения. Определены выражения для указанных присоединенных масс. Для режима установившихся гармонических колебаний построены амплитудно-частотные и фазово-частотные характеристики торцевой стенки, учитывающие демпфирующие и инерционные свойства слоя вязкой жидкости в канале. Моделирование показало, что совместный учет инерции движения слоя жидкости в канале и его демпфирующих свойств приводит к сдвигу резонансных частот колебаний в низкочастотную область и возрастанию амплитуд колебаний торцевой стенки.
Ключевые слова: гидроупругие колебания, торцевая стенка, вязкая жидкость, сильфон, частотные характеристики.
Modeling of a channel wall interaction with an end seal flexibly restrained at the edge
Computer Research and Modeling, 2020, v. 12, no. 2, pp. 387-400The paper proposes a new mathematical model to study the interaction dynamics of the longitudinal wall of a narrow channel with its end seal. The end seal was considered as the edge wall on a spring, i.e. spring-mass system. These walls interaction occurs via a viscous liquid filling the narrow channel; thus required the formulation and solution of the hydroelasticity problem. However, this problem has not been previously studied. The problem consists of the Navier–Stokes equations, the continuity equation, the edge wall dynamics equation, and the corresponding boundary conditions. Two cases of fluid motion in a narrow channel with parallel walls were studied. In the first case, we assumed the liquid motion as the creeping one, and in the second case as the laminar, taking into account the motion inertia. The hydroelasticty problem solution made it possible to determine the distribution laws of velocities and pressure in the liquid layer, as well as the motion law of the edge wall. It is shown that during creeping flow, the liquid physical properties and the channel geometric dimensions completely determine the damping in the considered oscillatory system. Both the end wall velocity and the longitudinal wall velocity affect the damping properties of the liquid layer. If the fluid motion inertia forces were taken into account, their influence on the edge wall vibrations was revealed, which manifested itself in the form of two added masses in the equation of its motion. The added masses and damping coefficients of the liquid layer due to the joint consideration of the liquid layer inertia and its viscosity were determined. The frequency and phase responses of the edge wall were constructed for the regime of steady-state harmonic oscillations. The simulation showed that taking into account the fluid layer inertia and its damping properties leads to a shift in the resonant frequencies to the low-frequency region and an increase in the oscillation amplitudes of the edge wall.
-
Численная модель переноса в задачах неустойчивостей низкоширотной ионосферы Земли с использованием двумерной монотонизированной Z-схемы
Компьютерные исследования и моделирование, 2021, т. 13, № 5, с. 1011-1023Целью работы является исследование монотонной конечно-разностной схемы второго порядка точности, созданной на основе обобщения одномерной Z-схемы. Исследование проведено для модельных уравнений переноса несжимаемой среды. В работе описано двумерное обобщение Z-схемы с нелинейной коррекцией, использующей вместо потоков косые разности, содержащие значения из разных временных слоев. Численно проверена монотонность полученной нелинейной схемы для функций-ограничителей двух видов, как для гладких решений, так и для негладких, и получены численные оценки порядка точности построенной схемы. Построенная схема является абсолютно устойчивой, но теряет свойство монотонности при превышении шага Куранта. Отличительной особенностью предложенной конечно-разностной схемы является минимальность ее шаблона.
Построенная численная схема предназначена для моделей плазменных неустойчивостей различных масштабов в низкоширотной ионосферной плазме Земли. Одна из реальных задач, при решении которых возникают подобные уравнения, — это численное моделирование сильно нестационарных среднемасштабных процессов в земной ионосфере в условиях возникновения неустойчивости Рэлея – Тейлора и плазменных структур с меньшими масштабами, механизмами генерации которых являются неустойчивости других типов, что приводит к явлению F-рассеяния. Вследствие того, что процессы переноса в ионосферной плазме контролируются магнитным полем, в поперечном к магнитному полю направле- нии предполагается выполнение условия несжимаемости плазмы.
Ключевые слова: нелинейная конечно-разностная схема, Z-схема, математическое моделирование, численное моделирование, уравнение переноса, ионосфера, неустойчивость Рэлея – Тейлора, несжимаемая плазма, неустойчивость плазмы.
Numerical model of transport in problems of instabilities of the Earth’s low-latitude ionosphere using a two-dimensional monotonized Z-scheme
Computer Research and Modeling, 2021, v. 13, no. 5, pp. 1011-1023The aim of the work is to study a monotone finite-difference scheme of the second order of accuracy, created on the basis of a generalization of the one-dimensional Z-scheme. The study was carried out for model equations of the transfer of an incompressible medium. The paper describes a two-dimensional generalization of the Z-scheme with nonlinear correction, using instead of streams oblique differences containing values from different time layers. The monotonicity of the obtained nonlinear scheme is verified numerically for the limit functions of two types, both for smooth solutions and for nonsmooth solutions, and numerical estimates of the order of accuracy of the constructed scheme are obtained.
The constructed scheme is absolutely stable, but it loses the property of monotony when the Courant step is exceeded. A distinctive feature of the proposed finite-difference scheme is the minimality of its template. The constructed numerical scheme is intended for models of plasma instabilities of various scales in the low-latitude ionospheric plasma of the Earth. One of the real problems in the solution of which such equations arise is the numerical simulation of highly nonstationary medium-scale processes in the earth’s ionosphere under conditions of the appearance of the Rayleigh – Taylor instability and plasma structures with smaller scales, the generation mechanisms of which are instabilities of other types, which leads to the phenomenon F-scattering. Due to the fact that the transfer processes in the ionospheric plasma are controlled by the magnetic field, it is assumed that the plasma incompressibility condition is fulfilled in the direction transverse to the magnetic field.
-
Исследование влияния миграции на социальную напряженность с использованием модели сплошной социальной стратификации
Компьютерные исследования и моделирование, 2022, т. 14, № 3, с. 661-673Фоновая социальная напряженность общества может быть количественно оценена по различным статистическим индикаторам. Модели, прогнозирующие динамику социальной напряженности, успешно применяются для описания различных социальных процессов. Когда количество рассматриваемых групп общества мало, динамику соответствующих индикаторов можно описать при помощи системы обыкновенных дифференциальных уравнений. При увеличении количества взаимодействующих элементов резко возрастает сложность задач, что существенно затрудняет их аналитическое исследование. Модель сплошной социальной стратификации получаетсяв результате перехода от дискретной цепочки взаимодействующих социальных слоев к их непрерывному распределению на некотором интервале, то есть перехода к модели сплошной среды. В этом случае напряженность распространяется локально, но в действительности элита общества влияет на все слои через средства массовой информации, а также интернет позволяет влиять всем группам на другие. Эти факторы можно учесть через слагаемое модели, описывающее негативное внешнее воздействие. В настоящей работе предложена модель сплошной социальной стратификации, описывающая динамику системы из двух социумов, связанных через процесс миграции населения. Предполагается, что из социального слоя системы-донора с наибольшей напряженностью происходит отток людей, переносящих свою напряженность в систему-акцептор, причем при миграции люди попадают в более бедные слои принимающего общества. Рассматриваетсяслуч ай пространственно однородных коэффициентов, что соответствует частному случаю небольшого социума. При помощи метода конечных объемов построена пространственнаяди скретизация задачи, корректно отражающая конечную скорость распространения напряженности в обществе. Выполнена проверка выбранной дискретизации путем сравненияч исленного решения с точными решениями вспомогательного уравнения нелинейной диффузии. Проведено численное исследование системы с миграцией при различных значениях параметров, проанализировано влияние интенсивности миграции на принимающее общество, найдены условия дестабилизации общества акцептора под влиянием миграции. Полученные в работе результаты могут быть применены при дальнейшем исследовании модели в случае пространственно неоднородных коэффициентов, что соответствует более реалистичной картине общества.
Ключевые слова: социальнаяна пряженность, модель сплошной социальной стратификации, уравнение нелинейной диффузии, метод конечных объемов.
Analysing the impact of migration on background social strain using a continuous social stratification model
Computer Research and Modeling, 2022, v. 14, no. 3, pp. 661-673The background social strain of a society can be quantitatively estimated using various statistical indicators. Mathematical models, allowing to forecast the dynamics of social strain, are successful in describing various social processes. If the number of interacting groups is small, the dynamics of the corresponding indicators can be modelled with a system of ordinary differential equations. The increase in the number of interacting components leads to the growth of complexity, which makes the analysis of such models a challenging task. A continuous social stratification model can be considered as a result of the transition from a discrete number of interacting social groups to their continuous distribution in some finite interval. In such a model, social strain naturally spreads locally between neighbouring groups, while in reality, the social elite influences the whole society via news media, and the Internet allows non-local interaction between social groups. These factors, however, can be taken into account to some extent using the term of the model, describing negative external influence on the society. In this paper, we develop a continuous social stratification model, describing the dynamics of two societies connected through migration. We assume that people migrate from the social group of donor society with the highest strain level to poorer social layers of the acceptor society, transferring the social strain at the same time. We assume that all model parameters are constants, which is a realistic assumption for small societies only. By using the finite volume method, we construct the spatial discretization for the problem, capable of reproducing finite propagation speed of social strain. We verify the discretization by comparing the results of numerical simulations with the exact solutions of the auxiliary non-linear diffusion equation. We perform the numerical analysis of the proposed model for different values of model parameters, study the impact of migration intensity on the stability of acceptor society, and find the destabilization conditions. The results, obtained in this work, can be used in further analysis of the model in the more realistic case of inhomogeneous coefficients.
-
Математические и вычислительные проблемы, связанные с образованием структур в сложных системах
Компьютерные исследования и моделирование, 2022, т. 14, № 4, с. 805-815В данной работе рассматривается система уравнений магнитной гидродинамики (МГД). Найденные точные решения описывают течения жидкости в пористой среде и связаны с вопросами разработки кернового симулятора и задачами управления параметрами несжимаемой жидкости и направлены на создание отечественной технологии «цифровое месторождение». Центральной проблемой, связанной с использованием вычислительной техники, являются сеточные аппроксимации большой размерности и суперЭВМ высокой производительности с большим числом параллельно работающих микропроцессоров. В качестве возможной альтернативы сеточным аппроксимациям большой размерности разрабатываются кинетические методы решения дифференциальных уравнений и методы «склейки» точных решений на грубых сетках. Сравнительный анализ эффективности вычислительных систем позволяет сделать вывод о необходимости развития организации вычислений, основанных на целочисленной арифметике в сочетании с универсальными приближенными методами. Предложен класс точных решений системы Навье – Стокса, описывающий трехмерные течения для несжимаемой жидкости, а также точные решения нестационарной трехмерной магнитной гидродинамики. Эти решения важны для практических задач управляемой динамики минерализованных флюидов, а также для создания библиотек тестов для верификации приближенных методов. Выделены ряд явлений, связанных с образованием макроскопических структур за счет высокой интенсивности взаимодействия элементов пространственно однородных систем, а также их возникновение за счет линейного пространственного переноса в пространственно-неоднородных системах. Принципиальным является то, что возникновение структур — это следствие разрывности операторов в нормах законов сохранения. Наиболее разработанной и универсальной является теория вычислительных методов для линейных задач. Поэтому с этой точки зрения важными являются процедуры «погружения» нелинейных задач в общие классы линейных за счет изменения исходной размерности описания и расширения функциональных пространств. Отождествление функциональных решений с функциями позволяет вычислять интегральные средние неизвестной, но в то же время ее нелинейные суперпозиции, вообще говоря, не являются слабыми пределами нелинейных суперпозиций приближений метода, т.е. существуют функциональные решения, которые не являются обобщенными в смысле С. Л. Соболева.
Mathematical and computational problems associated with the formation of structures in complex systems
Computer Research and Modeling, 2022, v. 14, no. 4, pp. 805-815In this paper, the system of equations of magnetic hydrodynamics (MHD) is considered. The exact solutions found describe fluid flows in a porous medium and are related to the development of a core simulator and are aimed at creating a domestic technology «digital deposit» and the tasks of controlling the parameters of incompressible fluid. The central problem associated with the use of computer technology is large-dimensional grid approximations and high-performance supercomputers with a large number of parallel microprocessors. Kinetic methods for solving differential equations and methods for «gluing» exact solutions on coarse grids are being developed as possible alternatives to large-dimensional grid approximations. A comparative analysis of the efficiency of computing systems allows us to conclude that it is necessary to develop the organization of calculations based on integer arithmetic in combination with universal approximate methods. A class of exact solutions of the Navier – Stokes system is proposed, describing three-dimensional flows for an incompressible fluid, as well as exact solutions of nonstationary three-dimensional magnetic hydrodynamics. These solutions are important for practical problems of controlled dynamics of mineralized fluids, as well as for creating test libraries for verification of approximate methods. A number of phenomena associated with the formation of macroscopic structures due to the high intensity of interaction of elements of spatially homogeneous systems, as well as their occurrence due to linear spatial transfer in spatially inhomogeneous systems, are highlighted. It is fundamental that the emergence of structures is a consequence of the discontinuity of operators in the norms of conservation laws. The most developed and universal is the theory of computational methods for linear problems. Therefore, from this point of view, the procedures of «immersion» of nonlinear problems into general linear classes by changing the initial dimension of the description and expanding the functional spaces are important. Identification of functional solutions with functions makes it possible to calculate integral averages of an unknown, but at the same time its nonlinear superpositions, generally speaking, are not weak limits of nonlinear superpositions of approximations of the method, i.e. there are functional solutions that are not generalized in the sense of S. L. Sobolev.
-
Результаты моделирования полевых экспериментов по созданию восходящих потоков для развития искусственных облаков и осадков
Компьютерные исследования и моделирование, 2023, т. 15, № 4, с. 941-956Перспективным методом повышения количества осадков в засушливом климате является способ создания вертикальной высокотемпературной струи, насыщенной гигроскопическим аэрозолем. Такая установка позволяет создавать искусственные облака с возможностью образования осадков в безоблачной атмосфере, в отличие от традиционных способов искусственного увеличения осадков, в которых предусматривается повышение эффективности осадко-образования только в естественных облаках путем их засева ядрами кристаллизации и конденсации. Для увеличения мощности струи добавляются хлорид кальция, карбамид, пищевая соль в виде грубодисперсного аэрозоля, а также нанопорошок NaCl/TiO2, который способен конденсировать значительно больше водяного пара, чем перечисленные типы аэрозолей. Дисперсные включения в струе также являются центрами кристаллизации и конденсации в создаваемом облаке для повышения возможности осадкообразования. Для моделирования конвективных течений в атмосфере применяется математическая модель атмосферных течений большого масштаба FlowVision, решение уравнений движения, энергии и массопереноса проводится в относительных переменных. Рассматриваемая постановка задачи разделена на две части: модель начальной струи и постановка атмосферных течений большого масштаба FlowVision. Нижняя область, где происходит течение начальной высокоскоростной струи, моделируется в сжимаемой постановке с решением уравнения энергии относительно полной энтальпии. Данное разделение задачи на две отдельные подобласти необходимо, чтобы корректно провести численный расчет начальной турбулентной струи при высокой скорости (M > 0,3). Приводятся основные математические зависимости модели. С использованием представленной модели проведены численные эксперименты, для исходных данных взяты экспериментальные данные из натурных испытаний установки по созданию искусственных облаков, проведенные в Объединенных Арабских Эмиратах. Получено хорошее согласие с экспериментом: в 55% проведенных расчетов значение вертикальной скорости на высоте 400 м (более 2 м/с) и высота подъема струи (более 600 м) находятся в пределах погрешности 30% от экспериментальных характеристик, а в 30% расчетах — полностью согласуются с экспериментом. Результаты численного моделирования позволяют оценить возможность использования метода высокоскоростной струи для стимулирования искусственной конвекции и, в конечном итоге, для создания осадков. Расчеты проведены с использованием программного комплекса FlowVision на суперкомпьютере «Торнадо ЮУрГУ».
Ключевые слова: искусственные осадки, искусственные облака, CFD, вычислительная газодинамика, метеорология, высокоскоростная струя, метеотроны.
Simulation results of field experiments on the creation of updrafts for the development of artificial clouds and precipitation
Computer Research and Modeling, 2023, v. 15, no. 4, pp. 941-956A promising method of increasing precipitation in arid climates is the method of creating a vertical high-temperature jet seeded by hygroscopic aerosol. Such an installation makes it possible to create artificial clouds with the possibility of precipitation formation in a cloudless atmosphere, unlike traditional methods of artificial precipitation enhancement, which provide for increasing the efficiency of precipitation formation only in natural clouds by seeding them with nuclei of crystallization and condensation. To increase the power of the jet, calcium chloride, carbamide, salt in the form of a coarse aerosol, as well as NaCl/TiO2 core/shell novel nanopowder, which is capable of condensing much more water vapor than the listed types of aerosols, are added. Dispersed inclusions in the jet are also centers of crystallization and condensation in the created cloud to increase the possibility of precipitation. To simulate convective flows in the atmosphere, a mathematical model of FlowVision large-scale atmospheric flows is used, the solution of the equations of motion, energy and mass transfer is carried out in relative variables. The statement of the problem is divided into two parts: the initial jet model and the FlowVision large-scale atmospheric model. The lower region, where the initial high-speed jet flows, is calculated using a compressible formulation with the solution of the energy equation with respect to the total enthalpy. This division of the problem into two separate subdomains is necessary in order to correctly carry out the numerical calculation of the initial turbulent jet at high velocity (M > 0.3). The main mathematical dependencies of the model are given. Numerical experiments were carried out using the presented model, experimental data from field tests of the installation for creating artificial clouds were taken for the initial data. A good agreement with the experiment is obtained: in 55% of the calculations carried out, the value of the vertical velocity at a height of 400 m (more than 2 m/s) and the height of the jet rise (more than 600 m) is within an deviation of 30% of the experimental characteristics, and in 30% of the calculations it is completely consistent with the experiment. The results of numerical simulation allow evaluating the possibility of using the high-speed jet method to stimulate artificial updrafts and to create precipitation. The calculations were carried out using FlowVision CFD software on SUSU Tornado supercomputer.
Keywords: artificial clouds, numerical simulation, CFD, artificial precipitation, meteorology, jet, meteotron. -
Sensitivity analysis and semi-analytical solution for analyzing the dynamics of coffee berry disease
Компьютерные исследования и моделирование, 2024, т. 16, № 3, с. 731-753Coffee berry disease (CBD), resulting from the Colletotrichum kahawae fungal pathogen, poses a severe risk to coffee crops worldwide. Focused on coffee berries, it triggers substantial economic losses in regions relying heavily on coffee cultivation. The devastating impact extends beyond agricultural losses, affecting livelihoods and trade economies. Experimental insights into coffee berry disease provide crucial information on its pathogenesis, progression, and potential mitigation strategies for control, offering valuable knowledge to safeguard the global coffee industry. In this paper, we investigated the mathematical model of coffee berry disease, with a focus on the dynamics of the coffee plant and Colletotrichum kahawae pathogen populations, categorized as susceptible, exposed, infected, pathogenic, and recovered (SEIPR) individuals. To address the system of nonlinear differential equations and obtain semi-analytical solution for the coffee berry disease model, a novel analytical approach combining the Shehu transformation, Akbari – Ganji, and Pade approximation method (SAGPM) was utilized. A comparison of analytical results with numerical simulations demonstrates that the novel SAGPM is excellent efficiency and accuracy. Furthermore, the sensitivity analysis of the coffee berry disease model examines the effects of all parameters on the basic reproduction number $R_0$. Moreover, in order to examine the behavior of the model individuals, we varied some parameters in CBD. Through this analysis, we obtained valuable insights into the responses of the coffee berry disease model under various conditions and scenarios. This research offers valuable insights into the utilization of SAGPM and sensitivity analysis for analyzing epidemiological models, providing significant utility for researchers in the field.
Ключевые слова: coffee berry disease (CBD), Colletotrichum kahawae pathogen, epidemic mathematical model, sensitivity analysis, Shehu transformation, Akbari – Ganji’s method (AGM), Pade approximation method, numerical simulation.
Sensitivity analysis and semi-analytical solution for analyzing the dynamics of coffee berry disease
Computer Research and Modeling, 2024, v. 16, no. 3, pp. 731-753Coffee berry disease (CBD), resulting from the Colletotrichum kahawae fungal pathogen, poses a severe risk to coffee crops worldwide. Focused on coffee berries, it triggers substantial economic losses in regions relying heavily on coffee cultivation. The devastating impact extends beyond agricultural losses, affecting livelihoods and trade economies. Experimental insights into coffee berry disease provide crucial information on its pathogenesis, progression, and potential mitigation strategies for control, offering valuable knowledge to safeguard the global coffee industry. In this paper, we investigated the mathematical model of coffee berry disease, with a focus on the dynamics of the coffee plant and Colletotrichum kahawae pathogen populations, categorized as susceptible, exposed, infected, pathogenic, and recovered (SEIPR) individuals. To address the system of nonlinear differential equations and obtain semi-analytical solution for the coffee berry disease model, a novel analytical approach combining the Shehu transformation, Akbari – Ganji, and Pade approximation method (SAGPM) was utilized. A comparison of analytical results with numerical simulations demonstrates that the novel SAGPM is excellent efficiency and accuracy. Furthermore, the sensitivity analysis of the coffee berry disease model examines the effects of all parameters on the basic reproduction number $R_0$. Moreover, in order to examine the behavior of the model individuals, we varied some parameters in CBD. Through this analysis, we obtained valuable insights into the responses of the coffee berry disease model under various conditions and scenarios. This research offers valuable insights into the utilization of SAGPM and sensitivity analysis for analyzing epidemiological models, providing significant utility for researchers in the field.
-
Стохастические переходы от порядка к хаосу в метапопуляционной модели с миграцией
Компьютерные исследования и моделирование, 2024, т. 16, № 4, с. 959-973Данная работа посвящена исследованию проблемы моделирования и анализа динамических режимов, как регулярных, так и хаотических, в системах связанных популяций в присутствии случайных возмущений. В качестве исходной детерминированной популяционной модели рассматривается дискретная модель Рикера. В работе исследуется динамика двух популяций, связанных миграцией. Миграция пропорциональна разнице между плотностями двух популяций с коэффициентом связи, который отвечает за силу миграционного потока. Изолированные популяционные подсистемы, не учитывающие миграцию и моделируемые отображением Рикера, демонстрируют различные динамические режимы: равновесный, периодический и хаотический. В данной работе в качестве бифуркационного параметра используется коэффициент связи, а также фиксируются параметры естественного прироста популяций, при которых одна изп одсистем находится в равновесном режиме, а во второй преобладает хаотический режим. Связывание двух популяций посредством миграции порождает новые динамические режимы, не наблюдавшиеся в изолированной модели. Целью данной статьи является анализ динамических режимов корпоративной динамики при вариации интенсивности перетоков между популяционными подсистемами. В статье представлен бифуркационный анализа ттракторов детерминированной модели двух связанных популяций, выявлены зоны моно- и бистабильности, даны примеры регулярных и хаотических аттракторов. Основной акцент данной работы сделан на сравнении устойчивости динамических режимов к случайным возмущениям в коэффициенте интенсивности миграции. Методами прямого численного моделирования выявлены и описаны индуцированные шумом переходы с периодического аттрактора на хаотический. В статье представлены результаты анализа стохастических явлений с помощью показателя Ляпунова. Показано, что в рассматриваемой модели существует зона изменения бифуркационного параметра, при котором даже с увеличением интенсивности случайных возмущений не происходит переход от порядка к хаосу. Для аналитического исследования вызванных шумом переходов применены техника функции стохастической чувствительности и метод доверительных областей. В работе показано, как с помощью этого математического аппарата можно предсказать критическую интенсивность шума, вызывающую трансформацию периодического режима в хаотический.
Ключевые слова: метапопуляция, связанные системы, случайные возмущения, стохастическая чувствительность, переход «порядок – хаос», модель Рикера.
Stochastic transitions from order to chaos in a metapopulation model with migration
Computer Research and Modeling, 2024, v. 16, no. 4, pp. 959-973This paper focuses on the problem of modeling and analyzing dynamic regimes, both regular and chaotic, in systems of coupled populations in the presence of random disturbances. The discrete Ricker model is used as the initial deterministic population model. The paper examines the dynamics of two populations coupled by migration. Migration is proportional to the difference between the densities of two populations with a coupling coefficient responsible for the strength of the migration flow. Isolated population subsystems, modeled by the Ricker map, exhibit various dynamic modes, including equilibrium, periodic, and chaotic ones. In this study, the coupling coefficient is treated as a bifurcation parameter and the parameters of natural population growth rate remain fixed. Under these conditions, one subsystem is in the equilibrium mode, while the other exhibits chaotic behavior. The coupling of two populations through migration creates new dynamic regimes, which were not observed in the isolated model. This article aims to analyze the dynamics of corporate systems with variations in the flow intensity between population subsystems. The article presents a bifurcation analysis of the attractors in a deterministic model of two coupled populations, identifies zones of monostability and bistability, and gives examples of regular and chaotic attractors. The main focus of the work is in comparing the stability of dynamic regimes against random disturbances in the migration intensity. Noise-induced transitions from a periodic attractor to a chaotic attractor are identified and described using direct numerical simulation methods. The Lyapunov exponents are used to analyze stochastic phenomena. It has been shown that in this model, there is a region of change in the bifurcation parameter in which, even with an increase in the intensity of random perturbations, there is no transition from order to chaos. For the analytical study of noise-induced transitions, the stochastic sensitivity function technique and the confidence domain method are used. The paper demonstrates how this mathematical tool can be employed to predict the critical noise intensity that causes a periodic regime to transform into a chaotic one.
-
The impact of ecological mechanisms on stability in an eco-epidemiological model: Allee effect and prey refuge
Компьютерные исследования и моделирование, 2025, т. 17, № 1, с. 139-169Eco-epidemiological models provide insights into factors influencing disease transmission and host population stability. This study developed two eco-epidemiological models to investigate the impacts of prey refuge availability and an Allee effect on dynamics. Model A incorporated these mechanisms, while model B did not. Both models featured predator – prey and disease transmission and were analyzed mathematically and via simulation. Model equilibrium states were examined locally and globally under differing parameter combinations representative of environmental scenarios. Model A and B demonstrated globally stable conditions within certain parameter ranges, signalling refuge and Allee effect terms promote robustness. Moreover, model A showed a higher potential toward extinction of the species as a result of incorporating the Allee effect. Bifurcation analyses revealed qualitative shifts in behavior triggered by modifications like altered predation mortality. Model A manifested a transcritical bifurcation indicating critical population thresholds. Additional bifurcation types were noticed when refuge and Allee stabilizing impacts were absent in model B. Findings showed disease crowding effect and that host persistence is positively associated with refuge habitat, reducing predator – prey encounters. The Allee effect also calibrated stability via heightened sensitivity to small groups. Simulations aligned with mathematical predictions. Model A underwent bifurcations at critical predator death rates impacting prey outcomes. This work provides a valuable framework to minimize transmission given resource availability or demographic alterations, generating testable hypotheses.
Ключевые слова: Allee effect, prey refuge, predator – prey, eco-epidemiological model, nonlinear incidence rate, local stability, global stability, Hopf bifurcation, transcritical bifurcation.
The impact of ecological mechanisms on stability in an eco-epidemiological model: Allee effect and prey refuge
Computer Research and Modeling, 2025, v. 17, no. 1, pp. 139-169Eco-epidemiological models provide insights into factors influencing disease transmission and host population stability. This study developed two eco-epidemiological models to investigate the impacts of prey refuge availability and an Allee effect on dynamics. Model A incorporated these mechanisms, while model B did not. Both models featured predator – prey and disease transmission and were analyzed mathematically and via simulation. Model equilibrium states were examined locally and globally under differing parameter combinations representative of environmental scenarios. Model A and B demonstrated globally stable conditions within certain parameter ranges, signalling refuge and Allee effect terms promote robustness. Moreover, model A showed a higher potential toward extinction of the species as a result of incorporating the Allee effect. Bifurcation analyses revealed qualitative shifts in behavior triggered by modifications like altered predation mortality. Model A manifested a transcritical bifurcation indicating critical population thresholds. Additional bifurcation types were noticed when refuge and Allee stabilizing impacts were absent in model B. Findings showed disease crowding effect and that host persistence is positively associated with refuge habitat, reducing predator – prey encounters. The Allee effect also calibrated stability via heightened sensitivity to small groups. Simulations aligned with mathematical predictions. Model A underwent bifurcations at critical predator death rates impacting prey outcomes. This work provides a valuable framework to minimize transmission given resource availability or demographic alterations, generating testable hypotheses.
-
Сравнительный анализ моделей Дарси и Бринкмана при исследовании нестационарных режимов сопряженной естественной конвекции в пористой цилиндрической области
Компьютерные исследования и моделирование, 2013, т. 5, № 4, с. 623-634Проведен сравнительный анализ двух моделей пористой среды (Дарси и Бринкмана) на примере математического моделирования нестационарных режимов термогравитационной конвекции в пористой вертикальной цилиндрической полости с теплопроводной оболочкой конечной толщины в условиях конвективного охлаждения со стороны окружающей среды. Краевая задача математической физики, сформулированная в безразмерных переменных «функция тока — завихренность — температура», реализована численно неявным методом конечных разностей. Представлены результаты тестовых расчетов и влияния сеточных параметров, отражающие правомерность применения предлагаемого численного подхода. Установлены особенности класса сопряженных задач при использовании рассматриваемых моделей пористой среды.
Ключевые слова: сопряженный теплоперенос, термогравитационная конвекция, приближения Дарси–Буссинеска и Бринкмана–Буссинеска, пористая вертикальная цилиндрическая полость, нестационарный режим, численное моделирование.
Comparative analysis of Darcy and Brinkman models at studying of transient conjugate natural convection in a porous cylindrical cavity
Computer Research and Modeling, 2013, v. 5, no. 4, pp. 623-634Просмотров за год: 1. Цитирований: 4 (РИНЦ).Comparative analysis of two models of porous medium (Dacry and Brinkman) on an example of mathematical simulation of transient natural convection in a porous vertical cylindrical cavity with heat-conducting shell of finite thickness in conditions of convective cooling from an environment has been carried out. The boundary-value problem of mathematical physics formulated in dimensionless variables such as stream function, vorticity and temperature has been solved by implicit finite difference method. The presented verification results validate used numerical approach and also confirm that the solution is not dependent on the mesh size. Features of the conjugate heat transfer problems with considered models of porous medium have been determined.
-
Атомная визуализация алмазного резания
Компьютерные исследования и моделирование, 2016, т. 8, № 1, с. 137-149Данная работа посвящена созданию статической атомной модели двух поверхностей, контактирующих при электроалмазной обработке: алмазных зерен и шлифуемого ими материала. В центре работы стоят вопросы компьютерной визуализации этих поверхностей на молекулярном уровне, поскольку традиционное математическое описание не обладает достаточной наглядностью для демонстрации некоторых аспектов атомистической трибологии резания металлов с одновременно протекающими разными по своей физической природе процессами. А в электроалмазной обработке сочетается воздействие одновременно нескольких процессов: механический, электрический и электрохимический. Поэтому предлагаемая авторами методика моделирования остается единственным способом увидеть, что именно происходит на атомном уровне при резании материала алмазным зерном. В то же время статья может быть полезна как научно-познавательная, так как позволяет читателю понять, как на атомном уровне выглядят поверхности некоторых материалов.
Ключевые слова: моделирование и компьютерная визуализация, металлические фазы, тип кристаллической решетки, атомный радиус, комбинированная электроалмазная обработка, алмазное зерно.Просмотров за год: 5. Цитирований: 33 (РИНЦ).This work is devoted to creation of static atomic model of two surfaces in contact at electric diamond grinding: single-points diamond and material grinded of them. At the heart of the work there are issues of computer visualization of these surfaces at the molecular level, since traditional mathematical description does not possess sufficient visualization to demonstrate some aspects of the atomic tribology of metal cutting to simultaneously occurring the different, by their physical nature, processes. And in the electric diamond grinding blends effect of several processes simultaneously: mechanical, electrical and electrochemical. So the modeling technique proposed by authors is still the only way to see what is happening at the atomic level, cutting material of single-point diamond.
Журнал индексируется в Scopus
Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"