Все выпуски
- 2025 Том 17
- 2024 Том 16
- 2023 Том 15
- 2022 Том 14
- 2021 Том 13
- 2020 Том 12
- 2019 Том 11
- 2018 Том 10
- 2017 Том 9
- 2016 Том 8
- 2015 Том 7
- 2014 Том 6
- 2013 Том 5
- 2012 Том 4
- 2011 Том 3
- 2010 Том 2
- 2009 Том 1
-
Молекулярно-динамическая оценка механических свойств фибриллярного актина
Компьютерные исследования и моделирование, 2022, т. 14, № 5, с. 1081-1092Актин — консервативный структурный белок, который экспрессируется в клетках всех эукариот. При полимеризации он образует длинные нити фибриллярного актина, или F-актина, которые участвуют в формировании цитоскелета, в мышечном сокращении и его регуляции, а также во многих других процессах. Динамические и механические свойства актина важны для взаимодействия с другими белками и реализации его многочисленных функций в клетке. Мы провели молекулярно-динамические (МД) расчеты сегмента актиновой нити, состоящего из 24 мономеров, в отсутствие и в присутствии MgADP, с явным учетом растворителя и при физиологи- ческой ионной силе при 300 К длительностью 204,8 нс в силовых полях AMBER99SB-ILDN и CHARMM36 в программной среде GROMACS, используя в качестве исходной структуры современные структурные модели, полученные методом криоэлектронной микроскопии высокого разрешения. МД-расчеты показали, что стационарный режим флуктуаций структуры длинного сегмента F-актина вырабатывается через 80–100 нс после начала МД-траектории. По результатам МД-расчетов оценили основные параметры спирали актина и ее изгибную, продольную и торсионную жесткости, используя участок расчетной модели, достаточно далеко отстоящий от ее концов. Оцененные значения шага (2,72–2,75 нм) и угла (165–168◦) спирали F-актина, его изгибной (2,8–4,7 · 10−26 Н · м2), продольной (36–47 · 10−9 Н) и торсионной (2,6–3,1 · 10−26 Н · м2) жесткости хорошо согласуются с результатами наиболее надежных экспериментов. Результаты МД-расчетов показали, что современные структурные модели F-актина позволяют достаточно аккуратно описать его динамику и механические свойства при условии использования расчет- ных моделей, содержащих достаточно большое количество мономеров, современных силовых полей и относительно длинных МД-траекторий. Включение в МД-модели белков-партнеров актина, в частности тропомиозина и тропонина, может помочь понять молекулярные механизмы таких важных процессов, как регуляция мышечного сокращения.
Ключевые слова: F-актин, MgADP, математическое моделирование, молекулярная динамика, изгибная, продольная и торсионная жесткость.
Molecular dynamics assessment of the mechanical properties of fibrillar actin
Computer Research and Modeling, 2022, v. 14, no. 5, pp. 1081-1092Actin is a conserved structural protein that is expressed in all eukaryotic cells. When polymerized, it forms long filaments of fibrillar actin, or F-actin, which are involved in the formation of the cytoskeleton, in muscle contraction and its regulation, and in many other processes. The dynamic and mechanical properties of actin are important for interaction with other proteins and the realization of its numerous functions in the cell. We performed 204.8 ns long molecular dynamics (MD) simulations of an actin filament segment consisting of 24 monomers in the absence and the presence of MgADP at 300 K in the presence of a solvent and at physiological ionic strength using the AMBER99SBILDN and CHARMM36 force fields in the GROMACS software environment, using modern structural models as the initial structure obtained by high-resolution cryoelectron microscopy. MD calculations have shown that the stationary regime of fluctuations in the structure of the F-actin long segment is developed 80–100 ns after the start of the MD trajectory. Based on the results of MD calculations, the main parameters of the actin helix and its bending, longitudinal, and torsional stiffness were estimated using a section of the calculation model that is far enough away from its ends. The estimated subunit axial (2.72–2.75 nm) and angular (165–168◦) translation of the F-actin helix, its bending (2.8–4.7 · 10−26 N·m2), longitudinal (36–47·10−9 N), and torsional (2.6–3.1·10−26 N·m2) stiffness are in good agreement with the results of the most reliable experiments. The results of MD calculations have shown that modern structural models of F-actin make it possible to accurately describe its dynamics and mechanical properties, provided that computational models contain a sufficiently large number of monomers, modern force fields, and relatively long MD trajectories are used. The inclusion of actin partner proteins, in particular, tropomyosin and troponin, in the MD model can help to understand the molecular mechanisms of such important processes as the regulation of muscle contraction.
-
Методика анализа шумоиндуцированных явлений в двухкомпонентных стохастических системах реакционно-диффузионного типа со степенной нелинейностью
Компьютерные исследования и моделирование, 2025, т. 17, № 2, с. 277-291В работе построена и исследуется обобщенная модель, описывающая двухкомпонентные системы реакционно-диффузионного типа со степенной нелинейностью и учитывающая влияние внешних шумов. Для анализа обобщенной модели разработана методология, включающая в себя линейный анализ устойчивости, нелинейный анализ устойчивости и численное моделирование эволюции системы. Методика проведения линейного анализа опирается на базовые подходы, в которых для получения характеристического уравнения используется матрица линеаризации. Нелинейный анализ устойчивости проводится с точностью до моментов третьего порядка включительно. Для этого функции, описывающие динамику компонент, раскладываются в ряд Тейлора до слагаемых третьего порядка. Затем с помощью теоремы Новикова проводится процедура усреднения. В результате полученные уравнения образуют бесконечную иерархично подчиненную структуру, которую в определенный момент необходимо прервать. Для этого пренебрегаем вкладом слагаемых выше третьего порядка как в самих уравнениях, так и при построении уравнений моментов. Полученные уравнения образуют набор линейных уравнений, из которых формируется матрица устойчивости. Эта матрица имеет довольно сложную структуру, в связи с чем ее решение может быть получено только численно. Для проведения численного исследования эволюции системы выбран метод переменных направлений. Из-за наличия в анализируемой системе стохастической части метод был модифицирован таким образом, что на целых слоях проводится генерация случайных полей с заданным распределением и функцией корреляции, отвечающих за шумовой вклад в общую нелинейность. Апробация разработанной методологии проведена на предложенной Barrio et al. модели реакции – диффузии, по результатам исследования которой им показана схожесть получаемых структур с пигментацией рыб. В настоящей работе внимание сосредоточено на анализе поведения системы в окрестности ненулевой стационарной точки. Изучена зависимость действительной части собственных значений от волнового числа. В линейном анализе получена область значений волновых чисел, при которых возникает неустойчивость Тьюринга. Нелинейный анализ и численное моделирование эволюции системы проводятся для параметров модели, которые, напротив, находятся вне области неустойчивости Тьюринга. В рамках нелинейного анализа найдены интенсивности аддитивного шума, при которых, несмотря на отсутствие условий для возникновения диффузионной неустойчивости, система переходит в неустойчивое состояние. Результаты численного моделирования эволюции апробируемой модели демонстрируют процесс образования пространственных структур тьюрингового типа при воздействии на нее аддитивного шума.
Ключевые слова: шумоиндуцированные переходы, метод переменных направлений, системы реакционно-диффузионного типа, анализ устойчивости.
Technique for analyzing noise-induced phenomena in two-component stochastic systems of reaction – diffusion type with power nonlinearity
Computer Research and Modeling, 2025, v. 17, no. 2, pp. 277-291The paper constructs and studies a generalized model describing two-component systems of reaction – diffusion type with power nonlinearity, considering the influence of external noise. A methodology has been developed for analyzing the generalized model, which includes linear stability analysis, nonlinear stability analysis, and numerical simulation of the system’s evolution. The linear analysis technique uses basic approaches, in which the characteristic equation is obtained using a linearization matrix. Nonlinear stability analysis realized up to third-order moments inclusively. For this, the functions describing the dynamics of the components are expanded in Taylor series up to third-order terms. Then, using the Novikov theorem, the averaging procedure is carried out. As a result, the obtained equations form an infinite hierarchically subordinate structure, which must be truncated at some point. To achieve this, contributions from terms higher than the third order are neglected in both the equations themselves and during the construction of the moment equations. The resulting equations form a set of linear equations, from which the stability matrix is constructed. This matrix has a rather complex structure, making it solvable only numerically. For the numerical study of the system’s evolution, the method of variable directions was chosen. Due to the presence of a stochastic component in the analyzed system, the method was modified such that random fields with a specified distribution and correlation function, responsible for the noise contribution to the overall nonlinearity, are generated across entire layers. The developed methodology was tested on the reaction – diffusion model proposed by Barrio et al., according to the results of the study, they showed the similarity of the obtained structures with the pigmentation of fish. This paper focuses on the system behavior analysis in the neighborhood of a non-zero stationary point. The dependence of the real part of the eigenvalues on the wavenumber has been examined. In the linear analysis, a range of wavenumber values is identified in which Turing instability occurs. Nonlinear analysis and numerical simulation of the system’s evolution are conducted for model parameters that, in contrast, lie outside the Turing instability region. Nonlinear analysis found noise intensities of additive noise for which, despite the absence of conditions for the emergence of diffusion instability, the system transitions to an unstable state. The results of the numerical simulation of the evolution of the tested model demonstrate the process of forming spatial structures of Turing type under the influence of additive noise.
-
Численное исследование интенсивных ударных волн в запыленных средах с однородной и двухкомпонентной несущей фазой
Компьютерные исследования и моделирование, 2020, т. 12, № 1, с. 141-154Статья посвящена численному исследованию ударно-волновых течений в неоднородных средах — газовзвесях. В данной работе применяется двухскоростная двухтемпературная модель, в которой дисперсная компонента смеси имеет свою скорость и температуру. Для описания изменения концентрации дисперсной компоненты решается уравнение сохранения «средней плотности». В данном исследовании учитывались межфазное тепловое взаимодействие и межфазный обмен импульсом. Математическая модель позволяет описывать несущею фазу смеси как вязкую, сжимаемою и теплопроводную среду. Система уравнений решалась с помощью явного конечно-разностного метода Мак-Кормака второго порядка точности. Для получения монотонного численного решения к сеточной функции применялась схема нелинейной коррекции. В задаче ударно-волнового течения для составляющих скорости задавались однородные граничные условия Дирихле, для остальных искомых функций задавались граничные условия Неймана. В численных расчетах для того, чтобы выявить зависимость динамики всей смеси от свойств твердой компоненты, рассматривались различные параметры дисперсной фазы — объемное содержание, а также линейный размер дисперсных включений. Целью исследований было определить, каким образом свойства твердых включений влияют на параметры динамики несущей среды — газа. Исследовалось движение неоднородной среды в ударной трубе — канале, разделенном на две части; давление газа в одном из отсеков канала имело большее значение, чем в другом. В статье моделировались движение прямого скачка уплотнения из камеры высокого давления в камеру низкого давления, заполненную запыленной средой, последующее отражение ударной волны от твердой поверхности. Анализ численных расчетов показал, что уменьшение линейного размера частиц газовзвеси и увеличение физической плотности материала, из которого состоят частицы, приводят к формированию более интенсивной отраженной ударной волны с большей температурой и плотностью газа, а также меньшей скоростью движения отраженного возмущения и меньшей скоростью спутного потока газа в отраженной волне.
Ключевые слова: многофазные среды, гомогенные смеси, гетерогенные смеси, уравнение Навье–Стокса, ударные волны, газовзвеси, численное моделирование, межфазное взаимодействие.
Numerical study of intense shock waves in dusty media with a homogeneous and two-component carrier phase
Computer Research and Modeling, 2020, v. 12, no. 1, pp. 141-154The article is devoted to the numerical study of shock-wave flows in inhomogeneous media–gas mixtures. In this work, a two-speed two-temperature model is used, in which the dispersed component of the mixture has its own speed and temperature. To describe the change in the concentration of the dispersed component, the equation of conservation of “average density” is solved. This study took into account interphase thermal interaction and interphase pulse exchange. The mathematical model allows the carrier component of the mixture to be described as a viscous, compressible and heat-conducting medium. The system of equations was solved using the explicit Mac-Cormack second-order finite-difference method. To obtain a monotone numerical solution, a nonlinear correction scheme was applied to the grid function. In the problem of shock-wave flow, the Dirichlet boundary conditions were specified for the velocity components, and the Neumann boundary conditions were specified for the other unknown functions. In numerical calculations, in order to reveal the dependence of the dynamics of the entire mixture on the properties of the solid component, various parameters of the dispersed phase were considered — the volume content as well as the linear size of the dispersed inclusions. The goal of the research was to determine how the properties of solid inclusions affect the parameters of the dynamics of the carrier medium — gas. The motion of an inhomogeneous medium in a shock duct divided into two parts was studied, the gas pressure in one of the channel compartments is more important than in the other. The article simulated the movement of a direct shock wave from a high-pressure chamber to a low–pressure chamber filled with a dusty medium and the subsequent reflection of a shock wave from a solid surface. An analysis of numerical calculations showed that a decrease in the linear particle size of the gas suspension and an increase in the physical density of the material from which the particles are composed leads to the formation of a more intense reflected shock wave with a higher temperature and gas density, as well as a lower speed of movement of the reflected disturbance reflected wave.
-
Исследование достижимости цели в медицинском квесте
Компьютерные исследования и моделирование, 2025, т. 17, № 6, с. 1149-1179В работе представлено экспериментальное исследование древовидной структуры, возникающей при медицинском обследовании. При каждой встрече с медицинским специалистом пациент получает некоторое количество направлений на консультации других специалистов или на анализы. Возникает дерево направлений, каждую ветвь которого должен пройти пациент. В зависимости от разветвленности дерева оно может быть как конечным (и в этом случае обследование может быть завершено), так и бесконечным, когда цель пациента не может быть достигнута. В работе как экспериментально, так и теоретически изучаются критические свойства перехода системы из леса конечных деревьев в лес бесконечных в зависимости от вероятностных характеристик дерева.
Для описания предлагается модель, в которой дискретная функция вероятности числа ветвей на узле повторяет динамику непрерывного гауссового распределения. Характеристики распределения Гаусса (математическое ожидание $x_0$, среднеквадратичное отклонение $\sigma$) являются параметрами модели. В выбранной постановке задача относится к проблематике ветвящихся случайных процессов (ВСП) в неоднородной модели Гальтона – Ватсона.
Экспериментальное изучение проводится путем численного моделирования на конечных решетках. Построена фазовая диаграмма, определены границы областей различных фаз. Проведено сравнение с фазовой диаграммой, полученной из теоретических критериев для макросистем, установлено адекватное соответствие. Показано, что на конечных решетках переход является размытым.
Описание размытого фазового перехода проведено с помощью двух подходов. В первом (стандартном) подходе переход описывается с помощью так называемой функции включения, имеющей смысл доли одной из фаз в общем множестве. Установлено, что такой подход в данной системе неэффективен, поскольку найденное положение условной границы размытого перехода определяется только размером выбранной экспериментальной решетки и не несет объективного смысла.
Предлагается второй (оригинальный) подход, основанный на введении в рассмотрение параметра порядка, равного обратной средней высоте дерева, и анализа его поведения. Установлено, что динамика такого параметра порядка в сечениях $\sigma = \text{const}$ с очень небольшими отличиями имеет вид распределения Ферми – Дирака ($\sigma$ выполняет ту же функцию, что и температура для распределения Ферми – Дирака, $x_0$ — функцию энергии). Для параметра порядка подобрано эмпирическое выражение, введен и рассчитан аналог химического потенциала, который и имеет смысл характерного масштаба параметра порядка, то есть тех значений $x_0$, при которых условно можно считать, что порядок сменяется беспорядком. Этот критерий положен в основу определе- ния границы условного перехода в данном подходе. Установлено, что эта граница соответствует средней высоте дерева, равной двум поколениям. На основании обнаруженных свойств предложены рекомендации для медицинских учреждений, позволяющие контролировать обеспечение конечности траектории пациентов.
Рассмотренная модель и метод ее описания с помощью условно-бесконечных деревьев имеют приложение ко многим иерархическим системам. К таким системам можно отнести сети маршрутизации интернет-соединений, бюрократические сети, торговые, логистические сети, сети цитирования, игровые стратегии, задачи популяционной динамики и пр.
Ключевые слова: медицинское обследование, ветвящийся случайный процесс, модель Гальтона – Ватсона, размытые фазовые переходы, конечные системы, условно-бесконечные траектории, макросистема, функция включения, области почти чистых фаз, параметр порядка, химический потенциал, фазовая диаграмма, критическое поведение.
Research on the achievability of a goal in a medical quest
Computer Research and Modeling, 2025, v. 17, no. 6, pp. 1149-1179The work presents an experimental study of the tree structure that occurs during a medical examination. At each meeting with a medical specialist, the patient receives a certain number of areas for consulting other specialists or for tests. A tree of directions arises, each branch of which the patient should pass. Depending on the branching of the tree, it can be as final — and in this case the examination can be completed — and endless when the patient’s goal cannot be achieved. In the work both experimentally and theoretically studied the critical properties of the transition of the system from the forest of the final trees to the forest endless, depending on the probabilistic characteristics of the tree.
For the description, a model is proposed in which a discrete function of the probability of the number of branches on the node repeats the dynamics of a continuous gaussian distribution. The characteristics of the distribution of the Gauss (mathematical expectation of $x_0$, the average quadratic deviation of $\sigma$) are model parameters. In the selected setting, the task refers to the problems of branching random processes (BRP) in the heterogeneous model of Galton – Watson.
Experimental study is carried out by numerical modeling on the final grilles. A phase diagram was built, the boundaries of areas of various phases are determined. A comparison was made with the phase diagram obtained from theoretical criteria for macrosystems, and an adequate correspondence was established. It is shown that on the final grilles the transition is blurry.
The description of the blurry phase transition was carried out using two approaches. In the first, standard approach, the transition is described using the so-called inclusion function, which makes the meaning of the share of one of the phases in the general set. It was established that such an approach in this system is ineffective, since the found position of the conditional boundary of the blurred transition is determined only by the size of the chosen experimental lattice and does not bear objective meaning.
The second, original approach is proposed, based on the introduction of an parameter of order equal to the reverse average tree height, and the analysis of its behavior. It was established that the dynamics of such an order parameter in the $\sigma = \text{const}$ section with very small differences has the type of distribution of Fermi – Dirac ($\sigma$ performs the same function as the temperature for the distribution of Fermi – Dirac, $x_0$ — energy function). An empirical expression has been selected for the order parameter, an analogue of the chemical potential is introduced and calculated, which makes sense of the characteristic scale of the order parameter — that is, the values of $x_0$, in which the order can be considered a disorder. This criterion is the basis for determining the boundary of the conditional transition in this approach. It was established that this boundary corresponds to the average height of a tree equal to two generations. Based on the found properties, recommendations for medical institutions are proposed to control the provision of limb of the path of patients.
The model discussed and its description using conditionally-infinite trees have applications to many hierarchical systems. These systems include: internet routing networks, bureaucratic networks, trade and logistics networks, citation networks, game strategies, population dynamics problems, and others.
-
Снижение частоты промахов в неинклюзивный кэш с инклюзивным справочником многоядерного процессора
Компьютерные исследования и моделирование, 2023, т. 15, № 3, с. 639-656Хотя эпоха экспоненциального роста производительности компьютерных микросхем закончилась, даже настольные процессоры общего назначения сегодня имеют 16 и больше ядер. Поскольку пропускная способность памяти DRAM растет не с такой скоростью, как вычислительная мощность ядер, разработчики процессоров должны искать пути уменьшения частоты обменов с памятью на одну инструкцию. Непосредственным путем к этому является снижение частоты промахов в кэш последнего уровня. Предполагая уже реализованной схему «неинклюзивный кэш с инклюзивным справочником» (NCID), три способа дальнейшего снижения частоты промахов были исследованы.
Первый способ — это достижение более равномерного использования банков и наборов кэша применением хэш-функций для интерливинга и индексирования. В экспериментах в тестах SPEC CPU2017 refrate, даже простейшие хэш-функции на основе XOR показали увеличение производительности на 3,2%, 9,1% и 8,2% в конфигурациях процессора с 16, 32 и 64 ядрами и банками общего кэша, сравнимое с результатами для более сложных функций на основе матриц, деления и CRC.
Вторая оптимизация нацелена на уменьшение дублирования на разных уровнях кэшей путем автоматического переключения на эксклюзивную схему, когда она выглядит оптимальной. Известная схема этого типа, FLEXclusion, была модифицирована для использования в NCID-кэшах и показала улучшение производительности в среднемна 3,8%, 5,4% и 7,9% для 16-, 32- и 64-ядерных конфигураций.
Третьей оптимизацией является увеличение фактической емкости кэша использованием компрессии. Частота сжатия недорогим и быстрыма лгоритмом B DI*-HL (Base-Delta-Immediate Modified, Half-Line), разработанным для NCID, была измерена, и соответствующее увеличение емкости кэша дало около 1% среднего повышения производительности.
Все три оптимизации могут сочетаться и продемонстрировали прирост производительности в 7,7%, 16% и 19% для конфигураций с 16, 32 и 64 ядрами и банками соответственно.
Ключевые слова: многоядерный процессор, подсистема памяти, распределенный общий кэш, NCID, хэш-функции на основе XOR, компрессия данных.
Reducing miss rate in a non-inclusive cache with inclusive directory of a chip multiprocessor
Computer Research and Modeling, 2023, v. 15, no. 3, pp. 639-656Although the era of exponential performance growth in computer chips has ended, processor core numbers have reached 16 or more even in general-purpose desktop CPUs. As DRAM throughput is unable to keep pace with this computing power growth, CPU designers need to find ways of lowering memory traffic per instruction. The straightforward way to do this is to reduce the miss rate of the last-level cache. Assuming “non-inclusive cache, inclusive directory” (NCID) scheme already implemented, three ways of reducing the cache miss rate further were studied.
The first is to achieve more uniform usage of cache banks and sets by employing hash-based interleaving and indexing. In the experiments in SPEC CPU2017 refrate tests, even the simplest XOR-based hash functions demonstrated a performance increase of 3.2%, 9.1%, and 8.2% for CPU configurations with 16, 32, and 64 cores and last-level cache banks, comparable to the results of more complex matrix-, division- and CRC-based functions.
The second optimisation is aimed at reducing replication at different cache levels by means of automatically switching to the exclusive scheme when it appears optimal. A known scheme of this type, FLEXclusion, was modified for use in NCID caches and showed an average performance gain of 3.8%, 5.4 %, and 7.9% for 16-, 32-, and 64-core configurations.
The third optimisation is to increase the effective cache capacity using compression. The compression rate of the inexpensive and fast BDI*-HL (Base-Delta-Immediate Modified, Half-Line) algorithm, designed for NCID, was measured, and the respective increase in cache capacity yielded roughly 1% of the average performance increase.
All three optimisations can be combined and demonstrated a performance gain of 7.7%, 16% and 19% for CPU configurations with 16, 32, and 64 cores and banks, respectively.
Журнал индексируется в Scopus
Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"





