Текущий выпуск Номер 6, 2025 Том 17

Все выпуски

Результаты поиска по 'grid computing':
Найдено статей: 79
  1. Василевский Ю.В., Симаков С.С., Гамилов Т.М., Саламатова В.Ю., Добросердова Т.К., Копытов Г.В., Богданов О.Н., Данилов А.А., Дергачев М.А., Добровольский Д.Д., Косухин О.Н., Ларина Е.В., Мелешкина А.В., Мычка Е.Ю., Харин В.Ю., Чеснокова К.В., Шипилов А.А.
    Персонализация математических моделей в кардиологии: трудности и перспективы
    Компьютерные исследования и моделирование, 2022, т. 14, № 4, с. 911-930

    Большинство биомеханических задач, представляющих интерес для клиницистов, могут быть решены только с помощью персонализированных математических моделей. Такие модели позволяют формализовать и взаимоувязать ключевые патофизиологические процессы, на основе клинически доступных данных оценить неизмеряемые параметры, важные для диагностики заболеваний, спрогнозировать результат терапевтического или хирургического вмешательства. Использование моделей в клинической практике накладывает дополнительные ограничения: практикующие врачи требуют валидации модели на клинических случаях, быстроту и автоматизированность всей расчетной технологической цепочки от обработки входных данных до получения результата. Ограничения на время расчета, определяемые временем принятия врачебного решения (порядка нескольких минут), приводят к необходимости использования методов редукции, корректно описывающих исследуемые процессы в рамках численных моделей пониженной размерности или в рамках методов машинного обучения.

    Персонализация моделей требует пациентоориентированной оценки параметров модели и создания персонализированной геометрии расчетной области и построения расчетной сетки. Параметры модели оцениваются прямыми измерениями, либо методами решения обратных задач, либо методами машинного обучения. Требование персонализации моделей накладывает серьезные ограничения на количество настраиваемых параметров модели, которые могут быть измерены в стандартных клинических условиях. Помимо параметров, модели включают краевые условия, которые также должны учитывать особенности пациента. Методы задания персонализированных краевых условий существенно зависят от решаемой клинической задачи, зоны ее интереса и доступных клинических данных. Построение персонализированной области посредством сегментации медицинских изображений и построение расчетной сетки, как правило, занимают значительную долю времени при разработке персонализированной вычислительной модели, так как часто выполняются в ручном или полуавтоматическом режиме. Разработка автоматизированных методов постановки персонализированных краевых условий и сегментации медицинских изображений с последующим построением расчетной сетки является залогом широкого использования математического моделирования в клинической практике.

    Цель настоящей работы — обзор и анализ наших решений по персонализации математических моделей в рамках трех задач клинической кардиологии: виртуальной оценки гемодинамической значимости стенозов коронарных артерий, оценки изменений системного кровотока после гемодинамической коррекции сложных пороков сердца, расчета характеристик коаптации реконструированного аортального клапана.

    Vassilevski Y.V., Simakov S.S., Gamilov T.M., Salamatova V.Yu., Dobroserdova T.K., Kopytov G.V., Bogdanov O.N., Danilov A.A., Dergachev M.A., Dobrovolskii D.D., Kosukhin O.N., Larina E.V., Meleshkina A.V., Mychka E.Yu., Kharin V.Yu., Chesnokova K.V., Shipilov A.A.
    Personalization of mathematical models in cardiology: obstacles and perspectives
    Computer Research and Modeling, 2022, v. 14, no. 4, pp. 911-930

    Most biomechanical tasks of interest to clinicians can be solved only using personalized mathematical models. Such models allow to formalize and relate key pathophysiological processes, basing on clinically available data evaluate non-measurable parameters that are important for the diagnosis of diseases, predict the result of a therapeutic or surgical intervention. The use of models in clinical practice imposes additional restrictions: clinicians require model validation on clinical cases, the speed and automation of the entire calculated technological chain, from processing input data to obtaining a result. Limitations on the simulation time, determined by the time of making a medical decision (of the order of several minutes), imply the use of reduction methods that correctly describe the processes under study within the framework of reduced models or machine learning tools.

    Personalization of models requires patient-oriented parameters, personalized geometry of a computational domain and generation of a computational mesh. Model parameters are estimated by direct measurements, or methods of solving inverse problems, or methods of machine learning. The requirement of personalization imposes severe restrictions on the number of fitted parameters that can be measured under standard clinical conditions. In addition to parameters, the model operates with boundary conditions that must take into account the patient’s characteristics. Methods for setting personalized boundary conditions significantly depend on the clinical setting of the problem and clinical data. Building a personalized computational domain through segmentation of medical images and generation of the computational grid, as a rule, takes a lot of time and effort due to manual or semi-automatic operations. Development of automated methods for setting personalized boundary conditions and segmentation of medical images with the subsequent construction of a computational grid is the key to the widespread use of mathematical modeling in clinical practice.

    The aim of this work is to review our solutions for personalization of mathematical models within the framework of three tasks of clinical cardiology: virtual assessment of hemodynamic significance of coronary artery stenosis, calculation of global blood flow after hemodynamic correction of complex heart defects, calculating characteristics of coaptation of reconstructed aortic valve.

  2. Холодков К.И., Алёшин И.М.
    Точное вычисление апостериорной функции распределения вероятно- сти при помощи вычислительных систем
    Компьютерные исследования и моделирование, 2015, т. 7, № 3, с. 539-542

    Представленная работа описывает опыт создания и развёртывания веб-приложения и гридинфраструктуры для решения задач геофизики, требующих большого количества вычислительных ресурсов. В работе представлен обзор технологии и механизма платформы интеграции геофизических приложений с распределёнными вычислительными системами. Разработанная платформа предоставляет собой промежуточное программное обеспечение, предоставляющая удобный доступ к развёрнутым на ее основе геофизическим приложениям. Доступ к приложению осуществляется через веб-браузер. Интеграция новых приложений облегчается за счёт предоставляемого стандартного универсального интерфейса взаимодействия платформы и новым приложением.

    Для организации распределённой вычислительной системы применено ПО Gridway, экземпляр которого взаимодействует с виртуализированными вычислительными кластерами. Виртуализация вычислительных кластеров предоставляет новые возможности при утилизации вычислительных ресурсов по сравнению с традиционными схемами организации кластерного ПО.

    В качестве пилотной задачи использована обратная задача определение параметров анизотропии коры и верхней мантии по данным телесейсмических наблюдений. Для решения использован вероятностный подход к решению обратных задач, основанный на формализме апостериорной функции распределения (АПФР). При этом вычислительная задача сводится к табулированию многомерной функции. Результат вычислений представлен в удобном для анализа высокоуровневом виде, доступ и управление осуществляется при помощи СУБД. Приложение предоставляет инструменты анализу АПФР: расчет первых моментов, двумерные маргинальные распределения, двумерные сечения АПФР в точках ее максимума. При тестировании веб-приложения были выполнены вычислены как синтетических, так и для реальных данных.

    Kholodkov K.I., Aleshin I.M.
    Exact calculation of a posteriori probability distribution with distributed computing systems
    Computer Research and Modeling, 2015, v. 7, no. 3, pp. 539-542

    We'd like to present a specific grid infrastructure and web application development and deployment. The purpose of infrastructure and web application is to solve particular geophysical problems that require heavy computational resources. Here we cover technology overview and connector framework internals. The connector framework links problem-specific routines with middleware in a manner that developer of application doesn't have to be aware of any particular grid software. That is, the web application built with this framework acts as an interface between the user 's web browser and Grid's (often very) own middleware.

    Our distributed computing system is built around Gridway metascheduler. The metascheduler is connected to TORQUE resource managers of virtual compute nodes that are being run atop of compute cluster utilizing the virtualization technology. Such approach offers several notable features that are unavailable to bare-metal compute clusters.

    The first application we've integrated with our framework is seismic anisotropic parameters determination by inversion of SKS and converted phases. We've used probabilistic approach to inverse problem solution based on a posteriory probability distribution function (APDF) formalism. To get the exact solution of the problem we have to compute the values of multidimensional function. Within our implementation we used brute-force APDF calculation on rectangular grid across parameter space.

    The result of computation is stored in relational DBMS and then represented in familiar human-readable form. Application provides several instruments to allow analysis of function's shape by computational results: maximum value distribution, 2D cross-sections of APDF, 2D marginals and a few other tools. During the tests we've run the application against both synthetic and observed data.

    Просмотров за год: 3.
  3. Куклин Е.Ю., Созыкин А.В., Берсенёв А.Ю., Масич Г.Ф.
    Распределенная система хранения УРО РАН на основе dCache
    Компьютерные исследования и моделирование, 2015, т. 7, № 3, с. 559-563

    Представлен подход к созданию территориально-распределенной системы хранения данных для нужд среды высокопроизводительных вычислений УрО РАН. Система основывается на промежуточном программном обеспечении dCache из проекта European Middleware Initiative. Первая очередь реализации системы охватывает вычислительные центры в двух регионах присутствия УрО РАН: г. Екатеринбург и г. Пермь.

    Kuklin E.Yu., Sozykin A.V., Bersenev A.Yu., Masich G.F.
    Distributed dCache-based storage system of UB RAS
    Computer Research and Modeling, 2015, v. 7, no. 3, pp. 559-563

    The approach to build territorial distributed storage system for high performance computing environment of UB RAS is presented. The storage system is based on the dCache middleware from the European Middleware Initiative project. The first milestone of distributed storage system implementation includes the data centers at the two UB RAS Regions: Yekaterinburg and Perm.

    Цитирований: 3 (РИНЦ).
  4. Мароши А.К., Ловаш Р.
    Определение добровольных вычислений: формальный подход
    Компьютерные исследования и моделирование, 2015, т. 7, № 3, с. 565-571

    Добровольные вычисления напоминают частные desktop гриды, тогда как desktop гриды не полностью эквивалентны добровольным вычислениям. Известны несколько попыток отличить и категоризировать их, используя как неофициальные, так и формальные методы. Однако, наиболее формальные подходы моделируют специфическое промежуточное ПО (middleware) и не сосредотачиваются на общем понятии добровольного или desktop грид. Эта работа и есть попытка формализовать их характеристики и отношения. Для этой цели применяется формальное моделирование, которое пытается охватить семантику их функциональных возможностей — в противоположность сравнениям, основанным на свойствах, особенностях, и т. п. Мы применяем этот метод моделирования с целью формализовать добровольную вычислительную систему Открытой Инфраструктуры Беркли для сетевых вычислений (BOINC) [Anderson D. P., 2004].

    Marosi A.C., Lovas R.
    Defining volunteer computing: a formal approach
    Computer Research and Modeling, 2015, v. 7, no. 3, pp. 565-571

    Volunteer computing resembles private desktop grids whereas desktop grids are not fully equivalent to volunteer computing. There are several attempts to distinguish and categorize them using informal and formal methods. However, most formal approaches model a particular middleware and do not focus on the general notion of volunteer or desktop grid computing. This work makes an attempt to formalize their characteristics and relationship. To this end formal modeling is applied that tries to grasp the semantic of their functionalities — as opposed to comparisons based on properties, features, etc. We apply this modeling method to formalize the Berkeley Open Infrastructure for Network Computing (BOINC) [Anderson D. P., 2004] volunteer computing system.

  5. Бережная А.Я., Велихов В.Е., Лазин Ю.А., Лялин И.Н., Рябинкин Е.А., Ткаченко И.А.
    Ресурсный центр обработки данных уровня Tier-1 в национальном исследовательском центре «Курчатовский институт» для экспериментов ALICE, ATLAS и LHCb на Большом адронном коллайдере (БАК)
    Компьютерные исследования и моделирование, 2015, т. 7, № 3, с. 621-630

    Представлен обзор распределенной вычислительной инфраструктуры ресурсных центров коллаборации WLCG для экспериментов БАК. Особое внимание уделено описанию решаемых задач и основным сервисам нового ресурсного центра уровня Tier-1, созданного в Национальном исследовательском центре «Курчатовский институт» для обслуживания ALICE, ATLAS и LHCb экспериментов (г. Москва).

    Berezhnaya A.Ya., Velikhov V.E., Lazin Y.A., Lyalin I.N., Ryabinkin E.A., Tkachenko I.A.
    The Tier-1 resource center at the National Research Centre “Kurchatov Institute” for the experiments, ALICE, ATLAS and LHCb at the Large Hadron Collider (LHC)
    Computer Research and Modeling, 2015, v. 7, no. 3, pp. 621-630

    The review of the distributed computing infrastructure of the Tier-1 sites for the Alice, ATLAS, LHCb experiments at the LHC is given. The special emphasis is placed on the main tasks and services of the Tier-1 site, which operates in the Kurchatov Institute in Moscow.

    Просмотров за год: 2.
  6. Бондяков А.С.
    Основные направления развития информационных технологий Национальной академии наук Азербайджана
    Компьютерные исследования и моделирование, 2015, т. 7, № 3, с. 657-660

    Грид-инфраструктура — компьютерная инфраструктура нового типа, обеспечивающая глобальную интеграцию информационных и вычислительных ресурсов. Грид-сегмент в Азербайджане был создан в 2008 году в Институте физики НАН при активной поддержке международных организаций ОИЯИ и CERN. Грид приобретает все большую популярность в научно-исследовательских и образовательных центрах Азербайджана. Среди основных направлений использования грид на данный момент можно выделить научные исследования в физике высоких энергий, физике твердого тела, энергетике, астрофизике, биологии, науках о Земле, а также в медицине.

    Bondyakov A.S.
    Basic directions of information technology in National Academy of Sciences of Azerbaijan
    Computer Research and Modeling, 2015, v. 7, no. 3, pp. 657-660

    Grid is a new type of computing infrastructure, is intensively developed in today world of information technologies. Grid provides global integration of information and computing resources. The essence Conception of GRID in Azerbaijan is to create a set of standardized services to provide a reliable, compatible, inexpensive and secure access to geographically distributed high-tech information and computing resources a separate computer, cluster and supercomputing centers, information storage, networks, scientific tools etc.

    Просмотров за год: 6. Цитирований: 1 (РИНЦ).
  7. Журавлев Е.Е., Иванов С.В., Каменщиков А.А., Корниенко В.Н., Олейников А.Я., Широбокова Т.Д.
    Особенности методики обеспечения интероперабельности в грид-среде и облачных вычислениях
    Компьютерные исследования и моделирование, 2015, т. 7, № 3, с. 675-682

    Представлена методика обеспечения интероперабельности для Грид-систем и систем облачных вычислений. Методика построена она основе единого подхода к обеспечению интероперабельности для систем широкого класса, предложенного авторами и зафиксированного в национальном стандарте РФ.

    Zhuravlev E.E., Ivanov S.V., Kamenshchikov A.A., Kornienko V.N., Oleynikov A.Ya., Shirobokova T.D.
    Aspects of methodology of ensuring interoperability in the Gridenvironment and cloud computing
    Computer Research and Modeling, 2015, v. 7, no. 3, pp. 675-682

    The technique of ensuring of interoperability for Grid-systems and systems of cloud computing is provided. The technique is constructed on a basis of the uniform approach of ensuring interoperability for systems of the wide class offered by authors and recorded in the national Russian Federation standard.

    Просмотров за год: 1. Цитирований: 3 (РИНЦ).
  8. Кореньков В.В., Нечаевский А.В., Ососков Г.А., Пряхина Д.И., Трофимов В.В., Ужинский А.В.
    Синтез процессов моделирования и мониторинга для развития систем хранения и обработки больших массивов данных в физических экспериментах
    Компьютерные исследования и моделирование, 2015, т. 7, № 3, с. 691-698

    Представлена новая система моделирования грид и облачных сервисов, ориентированная на повышение эффективности их развития путем учета качества работы уже функционирующей системы. Результаты достигаются за счет объединения программы моделирования с системой мониторинга реального (или модельного) грид-облачного сервиса через специальную базу данных. Приведен пример применения программы для моделирования достаточно общей облачной структуры, которая может быть также использована и вне рамок физического эксперимента.

    Korenkov V.V., Nechaevskiy A.V., Ososkov G.A., Pryahina D.I., Trofimov V.V., Uzhinskiy A.V.
    Synthesis of the simulation and monitoring processes for the development of big data storage and processing facilities in physical experiments
    Computer Research and Modeling, 2015, v. 7, no. 3, pp. 691-698

    The paper presents a new grid and cloud services simulation system. This system is developed in LIT JINR, Dubna, and it is aimed at improving the efficiency of the grid-cloud systems development by using work quality indicators of some real system to design and predict its evolution. For these purpose, simulation program is combined with real monitoring system of the grid-cloud service through a special database. The paper provides an example of the program usage to simulate a sufficiently general cloud structure, which can be used for more common purposes.

    Просмотров за год: 4. Цитирований: 6 (РИНЦ).
  9. Ткаченко И.А.
    Опыт использования puppet для управления вычислительным грид-кластером Tier-1 в НИЦ «Курчатовский институт»
    Компьютерные исследования и моделирование, 2015, т. 7, № 3, с. 735-740

    Статья посвящена организации системы управления кластером при помощи puppet. Рассматриваются вопросы: безопасности использования, с точки зрения массового применения к вычислительному кластеру неверной конфигурации (в виду человеческого фактора); организации совместной работы и создания для каждого администратора возможности, независимо от других, написания и отладки собственных сценариев, до включения их в общую систему управления; написания сценариев, которые позволят получить как целиком настроенный узел, так и обновлять конфигурацию по частям, не затрагивая остальные компоненты, независимо от текущего состояния узла вычислительного кластера.

    Сравниваются различные подходы к созданию иерархии puppet сценариев: описываются проблемы, связанные с использованием «include» для организации иерархии и переход к системе последова- тельного вызова классов через shell-скрипт.

    Tkachenko I.A.
    Experience of puppet usage for managment of Tier-1 GRID cluster at NRC “Kurchatov Institute”
    Computer Research and Modeling, 2015, v. 7, no. 3, pp. 735-740

    This article is about the organization of the cluster management using puppet. It tells about: safety of usage, from the point of view of mass apply at a computing cluster wrong configuration (by reason of human factor); collaboration work and the creation of opportunities for each cluster administrator, regardless of others, writing and debugging your own scripts, before include them in the overall system of cluster managment; writing scripts, which allow to get as fully configured nodes, and updates the configuration of any system parts, without affecting the rest of the nodes components, regardless of the current state of the node of computing cluster.

    The article compares different methods of the creation of the hierarchy of puppet scenarios, describes problems associated with the use of “include” for the organization hierarchy, and tells about the transition to a system of sequential call classes through shell-script.

Страницы: « первая предыдущая

Журнал индексируется в Scopus

Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"

Международная Междисциплинарная Конференция МАТЕМАТИКА. КОМПЬЮТЕР. ОБРАЗОВАНИЕ.