Все выпуски
- 2025 Том 17
- 2024 Том 16
- 2023 Том 15
- 2022 Том 14
- 2021 Том 13
- 2020 Том 12
- 2019 Том 11
- 2018 Том 10
- 2017 Том 9
- 2016 Том 8
- 2015 Том 7
- 2014 Том 6
- 2013 Том 5
- 2012 Том 4
- 2011 Том 3
- 2010 Том 2
- 2009 Том 1
-
ARC-CE: новости и перспективы
Компьютерные исследования и моделирование, 2015, т. 7, № 3, с. 407-414Вычислительный элемент ARC приобретает всё большую популярность в инфраструктурах WLCG и EGI, и используется не только в контексте систем Грид, но и как интерфейс к суперкомпьютерам и облачным ресурсам. Развитие и поддержка ARC опирается на вклады членов пользовательского сообщества, что помогает идти в ногу со всеми изменениями в сфере распределённых вычислений. Перспективы развития ARC тесно связаны с требованиями обработки данных БАК, в любых их проявлениях. ARC также используется и для нужд небольших научных сообществ, благодаря государственным вычислительным инфраструктурам в различных странах. Таким образом, ARC представляет собой эффективное решение для создания распределённых вычислительных инфраструктур, использующих разнообразные ресурсы.
ARC Compute Element is becoming more popular in WLCG and EGI infrastructures, being used not only in the Grid context, but also as an interface to HPC and Cloud resources. It strongly relies on community contributions, which helps keeping up with the changes in the distributed computing landscape. Future ARC plans are closely linked to the needs of the LHC computing, whichever shape it may take. There are also numerous examples of ARC usage for smaller research communities through national computing infrastructure projects in different countries. As such, ARC is a viable solution for building uniform distributed computing infrastructures using a variety of resources.
-
Алгоритмическое и программное обеспечение решения задач взаимодействия конструкции с жидкостью/газом на гибридных вычислительных системах
Компьютерные исследования и моделирование, 2013, т. 5, № 2, с. 153-164Рассматривается создание прикладного программного интерфейса с выделением самостоятельного приложения для синхронизации и обмена данными, в котором реализуются отдельные подзадачи связывания для решения сопряженных задач взаимодействия конструкции с жидкостью или газом. Обсуждаются алгоритмы связывания подзадач и деформирования расчетных сеток. На численных примерах показывается возможность решения ряда задач на кластерах с графическими процессорами.
Ключевые слова: моделирование взаимодействия газа и деформируемого тела, параллельные вычисления, гибридные вычислительные системы, деформация сеток, радиальные базисные функции.
Algorithms and Software for Solving Coupled Fluid-Structure Interaction Problems on Hybrid HPC Platform
Computer Research and Modeling, 2013, v. 5, no. 2, pp. 153-164Просмотров за год: 1. Цитирований: 11 (РИНЦ).In this paper, we propose a new software for simulation of fluid-structure interaction. The software is designed for solving coupled problems and provides an interface for synchronization synchronisation and data exchange between existing fluid and structural solvers. Algorithms of coupling solvers and mesh deformation are discussed. The software can be used on hybrid CPU/GPU platforms.
-
Параллельная реализация конечно-элементных алгоритмов на графических ускорителях в программном комплексе FEStudio
Компьютерные исследования и моделирование, 2014, т. 6, № 1, с. 79-97Рассматриваются новые подходы и алгоритмы распараллеливания вычислений метода конечных элементов, реализованные в программном комплексе FEStudio. Представлена программная модель комплекса, позволяющая расширять возможности распараллеливания на различных уровнях вычислений. Разработаны параллельные алгоритмы численного интегрирования динамических задач и локальных матриц жесткости, формирования и решения систем уравнений с использованием модели параллелизма данных CUDA.
Ключевые слова: метод конечных элементов, параллельные алгоритмы, гибридные вычислительные системы, объектно ориентированное программирование.
Parallel implementation of a finite-element algorithms on a graphics accelerator in the software package FEStudio
Computer Research and Modeling, 2014, v. 6, no. 1, pp. 79-97Просмотров за год: 4. Цитирований: 24 (РИНЦ).In this paper, we present new parallel algorithms for finite element analysis implemented in the FEStudio software framework. We describe the programming model of finite element method, which supports parallelism on different stages of numerical simulations. Using this model, we develop parallel algorithms of numerical integration for dynamic problems and local stiffness matrices. For constructing and solving the systems of equations, we use the CUDA programming platform.
-
Реализация клеточных автоматов «игра “Жизнь”» и клеточного автомата Кохомото-Ооно с применением технологии MPI
Компьютерные исследования и моделирование, 2010, т. 2, № 3, с. 319-322Данная работа является анализом результатов, полученных участниками летней школы по высокопроизводительным вычислениям МФТИ-2010 во время практикума по технологии MPI. В качестве проекта была предложена трехмерная версия игры Конвея «Жизнь». Разобраны основные способы решения, используемые участниками при разработке, приведена их теоретическая и практическая оценка по масштабируемости.
MPI implementations of Conway’s Game of Life and Kohomoto-Oono cellular automata
Computer Research and Modeling, 2010, v. 2, no. 3, pp. 319-322Просмотров за год: 11.Results obtained during practical training session on MPI during high perfomance computing summer school MIPT-2010 are discussed. MPI technology were one of technologies proposed to participants for realization of project. 3D version of Conway’s Game of Life was proposed as a project. Algorithms used in the development, theoretical and practical assessment of their scalability is analyzed.
-
Запуск приложений на гибридном кластере
Компьютерные исследования и моделирование, 2015, т. 7, № 3, с. 475-483Гибридный кластер подразумевает использование вычислительных ресурсов с различными архитектурами. Как правило, в таких системах используется CPU распространенной архитектуры (например, x86_64) и GPU (например, NVIDIA CUDA). Создание и эксплуатация подобного кластера требует определенного опыта: для того чтобы задействовать все вычислительные мощности такой системы и получить существенное ускорение на задачах, требуется учесть множество факторов. К таким факторам относятся как характеристики оборудования (например, особенности сетевой инфраструктуры, хранилища, архитектуры GPU), так и характеристики программного обеспечения (например, реализация MPI, библиотеки для работы с GPU). Таким образом для эффективных научных расчетов на подобных системах требуется помнить о характеристиках ускорителя (GPU), особенностях программного обеспечения, характеристиках задачи и о многих других факторах.
В этой статье анализируются достоинства и недостатки гибридных вычислений. Будут приведены результаты запуска некоторых тестов и научных приложений, использующих GPGPU. Основное внимание уделено программных продуктах с открытым исходным кодом, которые поддерживают работу с GPGPU.
Существует несколько подходов для организации гетерогенных вычислений. В данной статье мы рассмотрим приложения, использующие CUDA и OpenCL. CUDA довольно часто используется в подобных гибридных системах, в то время как переносимость OpenCL-приложений может сыграть решающую роль при выборе средства для разработки. Мы также уделим внимание системам с несколькими GPU, которые все чаще используются в рамках подобных кластеров. Вычисления проводились на гибридном кластере ресурсного центра «Вычислительный центр СПбГУ».
Ключевые слова: GPGPU, высокопроизводительные вычисления, вычислительные кластеры, OpenFOAM, LINPACK, ViennaCL, CUDA, OpenCL.
Running applications on a hybrid cluster
Computer Research and Modeling, 2015, v. 7, no. 3, pp. 475-483Просмотров за год: 4.A hybrid cluster implies the use of computational devices with radically different architectures. Usually, these are conventional CPU architecture (e.g. x86_64) and GPU architecture (e. g. NVIDIA CUDA). Creating and exploiting such a cluster requires some experience: in order to harness all computational power of the described system and get substantial speedup for computational tasks many factors should be taken into account. These factors consist of hardware characteristics (e.g. network infrastructure, a type of data storage, GPU architecture) as well as software stack (e.g. MPI implementation, GPGPU libraries). So, in order to run scientific applications GPU capabilities, software features, task size and other factors should be considered.
This report discusses opportunities and problems of hybrid computations. Some statistics from tests programs and applications runs will be demonstrated. The main focus of interest is open source applications (e. g. OpenFOAM) that support GPGPU (with some parts rewritten to use GPGPU directly or by replacing libraries).
There are several approaches to organize heterogeneous computations for different GPU architectures out of which CUDA library and OpenCL framework are compared. CUDA library is becoming quite typical for hybrid systems with NVIDIA cards, but OpenCL offers portability opportunities which can be a determinant factor when choosing framework for development. We also put emphasis on multi-GPU systems that are often used to build hybrid clusters. Calculations were performed on a hybrid cluster of SPbU computing center.
-
Распределенная система хранения УРО РАН на основе dCache
Компьютерные исследования и моделирование, 2015, т. 7, № 3, с. 559-563Представлен подход к созданию территориально-распределенной системы хранения данных для нужд среды высокопроизводительных вычислений УрО РАН. Система основывается на промежуточном программном обеспечении dCache из проекта European Middleware Initiative. Первая очередь реализации системы охватывает вычислительные центры в двух регионах присутствия УрО РАН: г. Екатеринбург и г. Пермь.
Ключевые слова: сетевые системы хранения, parallel NFS, ГРИД-технологии, параллельные вычисления Supported.
Distributed dCache-based storage system of UB RAS
Computer Research and Modeling, 2015, v. 7, no. 3, pp. 559-563Цитирований: 3 (РИНЦ).The approach to build territorial distributed storage system for high performance computing environment of UB RAS is presented. The storage system is based on the dCache middleware from the European Middleware Initiative project. The first milestone of distributed storage system implementation includes the data centers at the two UB RAS Regions: Yekaterinburg and Perm.
-
Комплекс слежения за вычислительными задачами в системе информационной поддержки научных проектов
Компьютерные исследования и моделирование, 2015, т. 7, № 3, с. 615-620В данной работе рассматривается идея системы информационной поддержки научных проектов и построение комплекса слежения за вычислительными задачами. Ввиду больших потребностей в вычислительных экспериментах предоставление информации о вычислительных задачах на HPC-ресурсах становится одной из важнейших проблем. В качестве решения этой проблемы предлагается нестандартное использование системы service desk — построение на ее базе комплекса слежения за выполнением вычислительных задач на распределенной системе и ее сопровождения. Особое внимание в статье уделено анализу и удовлетворению противоречивых требований к комплексу со стороны разных групп пользователей. Помимо этого, рассмотрена система веб-служб, служащая для интеграции комплекса слежения с окружением датацентра. Данный набор веб-служб является основным связующим компонентом системы поддержки научных проектов и позволяет гибко изменять конфигурацию системы в целом в любое время с минимальными потерями.
Computational task tracking complex in the scientific project informational support system
Computer Research and Modeling, 2015, v. 7, no. 3, pp. 615-620Просмотров за год: 2. Цитирований: 1 (РИНЦ).This work describes the idea of the system of informational support for the scientific projects and the development of computational task tracking complex. Due to large requirements for computational experiments the problem of presentation of the information about HPC tasks becomes one of the most important. Nonstandard usage of the service desk system as a basis of the computational task tracking and support system can be the solution of this problem. Particular attention is paid to the analysis and the satisfaction of the conflicting requirements to the task tracking complex from the different user groups. Besides the web service kit used for the integration of the task tracking complex and the datacenter environment is considered. This service kit became the main interconnect between the parts of the scientific project support system and also this kit allows to reconfigure the whole system quickly and safely.
Журнал индексируется в Scopus
Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"