Все выпуски
- 2025 Том 17
- 2024 Том 16
- 2023 Том 15
- 2022 Том 14
- 2021 Том 13
- 2020 Том 12
- 2019 Том 11
- 2018 Том 10
- 2017 Том 9
- 2016 Том 8
- 2015 Том 7
- 2014 Том 6
- 2013 Том 5
- 2012 Том 4
- 2011 Том 3
- 2010 Том 2
- 2009 Том 1
-
Подход к решению невыпуклой равномерно вогнутой седловой задачи со структурой
Компьютерные исследования и моделирование, 2022, т. 14, № 2, с. 225-237В последнее время седловым задачам уделяется большое внимание благодаря их мощным возможностям моделирования для множества задач из различных областей. Приложения этих задач встречаются в многочисленных современных прикладных областях, таких как робастная оптимизация, распределенная оптимизация, теория игр и~приложения машинного обучения, такие как, например, минимизация эмпирического риска или обучение генеративно-состязательных сетей. Поэтому многие исследователи активно работают над разработкой численных методов для решения седловых задач в самых разных предположениях. Данная статья посвящена разработке численного метода решения седловых задач в невыпуклой равномерно вогнутой постановке. В этой постановке считается, что по группе прямых переменных целевая функция может быть невыпуклой, а по группе двойственных переменных задача является равномерно вогнутой (это понятие обобщает понятие сильной вогнутости). Был изучен более общий класс седловых задач со сложной композитной структурой и гёльдерово непрерывными производными высшего порядка. Для решения рассматриваемой задачи был предложен подход, при котором мы сводим задачу к комбинации двух вспомогательных оптимизационных задач отдельно для каждой группы переменных: внешней задачи минимизации и~внутренней задачи максимизации. Для решения внешней задачи минимизации мы используем адаптивный градиентный метод, который применим для невыпуклых задач, а также работает с неточным оракулом, который генерируется путем неточного решения внутренней задачи максимизации. Для решения внутренней задачи максимизации мы используем обобщенный ускоренный метод с рестартами, который представляет собой метод, объединяющий методы ускорения высокого порядка для минимизации выпуклой функции, имеющей гёльдерово непрерывные производные высшего порядка. Важной компонентой проведенного анализа сложности предлагаемого алгоритма является разделение оракульных сложностей на число вызовов оракула первого порядка для внешней задачи минимизации и оракула более высокого порядка для внутренней задачи максимизации. Более того, оценивается сложность всего предлагаемого подхода.
Ключевые слова: седловая задача, невыпуклая оптимизация, равномерно выпуклая функция, неточный оракул, метод высшего порядка.
An approach for the nonconvex uniformly concave structured saddle point problem
Computer Research and Modeling, 2022, v. 14, no. 2, pp. 225-237Recently, saddle point problems have received much attention due to their powerful modeling capability for a lot of problems from diverse domains. Applications of these problems occur in many applied areas, such as robust optimization, distributed optimization, game theory, and many applications in machine learning such as empirical risk minimization and generative adversarial networks training. Therefore, many researchers have actively worked on developing numerical methods for solving saddle point problems in many different settings. This paper is devoted to developing a numerical method for solving saddle point problems in the nonconvex uniformly-concave setting. We study a general class of saddle point problems with composite structure and H\"older-continuous higher-order derivatives. To solve the problem under consideration, we propose an approach in which we reduce the problem to a combination of two auxiliary optimization problems separately for each group of variables, the outer minimization problem w.r.t. primal variables, and the inner maximization problem w.r.t the dual variables. For solving the outer minimization problem, we use the Adaptive Gradient Method, which is applicable for nonconvex problems and also works with an inexact oracle that is generated by approximately solving the inner problem. For solving the inner maximization problem, we use the Restarted Unified Acceleration Framework, which is a framework that unifies the high-order acceleration methods for minimizing a convex function that has H\"older-continuous higher-order derivatives. Separate complexity bounds are provided for the number of calls to the first-order oracles for the outer minimization problem and higher-order oracles for the inner maximization problem. Moreover, the complexity of the whole proposed approach is then estimated.
-
The onset of the Darcy-ferroconvection flow model in a couple stress fluid subjected to a time-periodic magnetic field
Компьютерные исследования и моделирование, 2025, т. 17, № 2, с. 213-223This study investigates the influence of a time-periodic (modulation) magnetic field upon the development of ferroconvection in a densely packed medium saturated with couple stress ferromagnetic fluid. The Darcy model is used to describe the flow in porous medium. The research is important from practical and theoretical point of view. A time-periodic magnetic field is essential in circumscribing channels where the effect of gravity is less or nonexistent to generate circulation. There are numerous engineering uses for this in the manufacturing of magnetic field sensors, charged particle electrode materials, modulators, magnetic resonators, and optical devices. The resulting physical eigenvalue problem is dealt with by using isothermal boundary conditions and the regular perturbation technique with a small time-periodic amplitude. The onset criteria were defined on the supposition that the exchange of stability principle holds. The shift in the thermal Rayleigh number is dependent on the associated parameters: magnetic parameter, Vadasz number, couple stress parameter, porosity, and frequency of the time-periodic function. The results in this case indicate that the onset of ferroconvection can be enhanced or reduced by appropriate changes in the governing parameters.
The onset of the Darcy-ferroconvection flow model in a couple stress fluid subjected to a time-periodic magnetic field
Computer Research and Modeling, 2025, v. 17, no. 2, pp. 213-223This study investigates the influence of a time-periodic (modulation) magnetic field upon the development of ferroconvection in a densely packed medium saturated with couple stress ferromagnetic fluid. The Darcy model is used to describe the flow in porous medium. The research is important from practical and theoretical point of view. A time-periodic magnetic field is essential in circumscribing channels where the effect of gravity is less or nonexistent to generate circulation. There are numerous engineering uses for this in the manufacturing of magnetic field sensors, charged particle electrode materials, modulators, magnetic resonators, and optical devices. The resulting physical eigenvalue problem is dealt with by using isothermal boundary conditions and the regular perturbation technique with a small time-periodic amplitude. The onset criteria were defined on the supposition that the exchange of stability principle holds. The shift in the thermal Rayleigh number is dependent on the associated parameters: magnetic parameter, Vadasz number, couple stress parameter, porosity, and frequency of the time-periodic function. The results in this case indicate that the onset of ferroconvection can be enhanced or reduced by appropriate changes in the governing parameters.
-
Исследование точности метода решеточных уравнений Больцмана при расчете распространения акустических волн
Компьютерные исследования и моделирование, 2025, т. 17, № 6, с. 1069-1081В статье проводится систематическое исследование возможностей метода решеточных уравнений Больцмана (lattice Boltzmann method, LBM или РУБ) для описания распространения акустических волн. Рассмотрена задача о распространении возмущений от точечного гармонического источника акустических возмущений в неограниченном пространстве как в неподвижной среде (число Маха $M=0$), так и при наличии набегающего потока (число Маха $M=0{,}2$). Обе рассмотренные задачи имеют аналитическое решение в приближении линейной акустики, что позволяет количественно оценить точность численного метода.
Численная реализация осуществлена с использованием двумерной модели скоростей D2Q9 и оператора столкновений Бхатнагара – Гросса – Крука (BGK). Источник колебаний задавался согласно схеме Gou, а возникающий от источника паразитный шум в моментах старших порядков убирался за счет использования процедуры регуляризации функций распределения. Для минимизации отражений от границ расчетной области использовался гибридный подход, основанный на совместном использовании характеристических граничных условий на основе инвариантов Римана и поглощающих PML-слоев (perfectly matched layer) с параболическим профилем затухания.
В ходе работы проведен детальный анализ влияния вычислительных параметров метода на точность расчета. Исследована зависимость погрешности от толщины PML-слоя ($L_{\text{PML}}^{}$) и максимального коэффициента демпфирования ($\sigma_{\max}^{}$), безразмерной амплитуды источника ($Q'_0$) и шага расчетной сетки. Показано, что метод РУБ применим для моделирования распространения акустических волн и обладает вторым порядком точности. Установлено, что для достижения высокой точности расчета (относительная погрешность давления — не более $1\,\%$) достаточно пространственного разрешения в $20$ точек на длину волны ($\lambda$). Определены минимальные эффективные параметры PML-слоя: $\sigma_{\max}^{}\geqslant 0{,}02$ и $L_{\text{PML}}^{} \geqslant 2\lambda$, обеспечивающие отсутствие отражения от границ расчетной области. Также продемонстрировано, что при амплитудах источника $Q_0' \geqslant 0{,}1$ влияние нелинейных эффектов становится существенным по сравнению с другими источниками погрешности.
Ключевые слова: решеточные уравнения Больцмана (РУБ), аэроакустика, численное моделирование, регуляризация, PML-слой, характеристические граничные условия.
Investigation of the accuracy of the lattice Boltzmann method in calculating acoustic wave propagation
Computer Research and Modeling, 2025, v. 17, no. 6, pp. 1069-1081The article presents a systematic investigation of the capabilities of the lattice Boltzmann method (LBM) for modeling the propagation of acoustic waves. The study considers the problem of wave propagation from a point harmonic source in an unbounded domain, both in a quiescent medium (Mach number $M=0$) and in the presence of a uniform mean flow ($M=0.2$). Both scenarios admit analytical solutions within the framework of linear acoustics, allowing for a quantitative assessment of the accuracy of the numerical method.
The numerical implementation employs the two-dimensional D2Q9 velocity model and the Bhatnagar – Gross – Krook (BGK) collision operator. The oscillatory source is modeled using Gou’s scheme, while spurious high-order moment noise generated by the source is suppressed via a regularization procedure applied to the distribution functions. To minimize wave reflections from the boundaries of the computational domain, a hybrid approach is used, combining characteristic boundary conditions based on Riemann invariants with perfectly matched layers (PML) featuring a parabolic damping profile.
A detailed analysis is conducted to assess the influence of computational parameters on the accuracy of the method. The dependence of the error on the PML thickness ($L_{\text{PML}}^{}$) and the maximum damping coefficient ($\sigma_{\max}^{}$), the dimensionless source amplitude ($Q'_0$), and the grid resolution is thoroughly examined. The results demonstrate that the LBM is suitable for simulating acoustic wave propagation and exhibits second-order accuracy. It is shown that achieving high accuracy (relative pressure error below $1\,\%$) requires a spatial resolution of at least $20$ grid points per wavelength ($\lambda$). The minimal effective PML parameters ensuring negligible boundary reflections are identified as $\sigma_{\max}^{}\geqslant 0.02$ and $L_{\text{PML}}^{} \geqslant 2\lambda$. Additionally, it is shown that for source amplitudes $Q_0' \geqslant 0.1$, nonlinear effects become significant compared to other sources of error.
-
Рождение и развитие беспорядка внутри упорядоченного состояния в пространственно распределенной модели химической реакции
Компьютерные исследования и моделирование, 2017, т. 9, № 4, с. 595-607В работе изложены основные моменты приближения среднего поля в применении к многокомпонентным стохастическим реакционно-диффузионным системам.
Представлена изучаемая модель химической реакции — брюсселятор. Записаны кинетические уравнения реакции, учитывающие диффузию промежуточных компонент и флуктуации концентраций исходных веществ. Флуктуации моделируются как случайные гауссовы однородные и изотропные в пространстве поля, с нулевым средним и пространственной корреляционной функцией, имеющей нетривиальную структуру. В работе рассматриваются значения параметров модели, соответствующие пространственно неоднородному упорядоченному состоянию в детерминированном случае.
В работе получено одноточечное двумерное нелинейное самосогласованное уравнение Фоккера–Планка в интерпретации Стратоновича в приближении среднего поля для пространственно распределенного стохастического брюсселятора, которое описывает динамику плотности распределения вероятностей значений концентраций компонент рассматриваемой системы. Найдены значения интенсивности внешнего шума, соответствующие двум типам решений уравнения Фоккера–Планка: решению с времен- ной бимодальностью и решению с многократным чередованием одно- и бимодального видов плотности вероятностей. Проведено численное исследование динамики плотности распределения вероятностей и изучено поведение во времени дисперсий, математических ожиданий и наиболее вероятных значений концентраций компонент при различных значениях интенсивности шума и бифуркационного параметра в указанных областях параметров задачи.
Показано, что, начиная с некоторого значения интенсивности внешнего шума, внутри упорядоченной фазы зарождается беспорядок, существующий конечное время, причем чем больше шум, тем больше его время жизни. Чем дальше от точки бифуркации, тем меньше шум, который его порождает, и тем уже область значений интенсивности шума, при которых система эволюционирует к упорядоченному, но уже новому статистически стационарному состоянию. При некотором втором значении интенсивности шума возникает перемежаемость упорядоченной и разупорядоченной фаз. Увеличение интенсивности шума приводит к тому, что частота перемежаемости увеличивается.
Таким образом, показано, что сценарием шумоиндуцированного перехода «порядок–беспорядок» в изучаемой системе является перемежаемость упорядоченной и разупорядоченной фаз.
Ключевые слова: приближение среднего поля, системы реакционно-диффузионного типа, нелинейное самосогласованное уравнение Фоккера–Планка, динамические фазовые переходы, беспорядок.
Origin and growth of the disorder within an ordered state of the spatially extended chemical reaction model
Computer Research and Modeling, 2017, v. 9, no. 4, pp. 595-607Просмотров за год: 7.We now review the main points of mean-field approximation (MFA) in its application to multicomponent stochastic reaction-diffusion systems.
We present the chemical reaction model under study — brusselator. We write the kinetic equations of reaction supplementing them with terms that describe the diffusion of the intermediate components and the fluctuations of the concentrations of the initial products. We simulate the fluctuations as random Gaussian homogeneous and spatially isotropic fields with zero means and spatial correlation functions with a non-trivial structure. The model parameter values correspond to a spatially-inhomogeneous ordered state in the deterministic case.
In the MFA we derive single-site two-dimensional nonlinear self-consistent Fokker–Planck equation in the Stratonovich's interpretation for spatially extended stochastic brusselator, which describes the dynamics of probability distribution density of component concentration values of the system under consideration. We find the noise intensity values appropriate to two types of Fokker–Planck equation solutions: solution with transient bimodality and solution with the multiple alternation of unimodal and bimodal types of probability density. We study numerically the probability density dynamics and time behavior of variances, expectations, and most probable values of component concentrations at various noise intensity values and the bifurcation parameter in the specified region of the problem parameters.
Beginning from some value of external noise intensity inside the ordered phase disorder originates existing for a finite time, and the higher the noise level, the longer this disorder “embryo” lives. The farther away from the bifurcation point, the lower the noise that generates it and the narrower the range of noise intensity values at which the system evolves to the ordered, but already a new statistically steady state. At some second noise intensity value the intermittency of the ordered and disordered phases occurs. The increasing noise intensity leads to the fact that the order and disorder alternate increasingly.
Thus, the scenario of the noise induced order–disorder transition in the system under study consists in the intermittency of the ordered and disordered phases.
-
Оптимизация планирования выполнения пакетов заданий в многостадийных системах при ограничениях и формировании комплектов
Компьютерные исследования и моделирование, 2021, т. 13, № 5, с. 917-946Современные методы комплексного планирования выполнения пакетов заданий в многостадийных системах характеризуются наличием ограничений на размерность решаемой задачи, невозможностью гарантированного получения эффективных решений при различных значениях ее входных параметров, а также невозможностью учета условия формирования комплектов из результатов и ограничения на длительности интервалов времени функционирования системы. Для решения задачи планирования выполнения пакетов заданий при формировании комплектов результатов и ограничении на длительности интервалов времени функционирования системы реализована декомпозиция обобщенной функции системы на совокупность иерархически взаимосвязанных подфункций. Применение декомпозиции позволило использовать иерархический подход для планирования выполнения пакетов заданий в многостадийных системах, предусматривающий определение решений по составам пакетов заданий на первом уровне иерархии, решений по составам групп пакетов заданий, выполняемых в течение временных интервалов ограниченной длительности, на втором уровне и расписаний выполнения пакетов на третьем уровне иерархии. С целью оценки оптимальности решений по составам пакетов результаты их выполнения, полученные в течение заданных временных интервалов, распределяются по комплектам. Для определения комплексных решений применен аппарат теории иерархических игр. Построена модель иерархической игры для принятия решений по составам пакетов, групп пакетов и расписаниям выполнения пакетов, представляющая собой систему иерархически взаимосвязанных критериев оптимизации решений. В модели учтены условие формирования комплектов из результатов выполнения пакетов заданий и ограничение на длительность интервалов времени ее функционирования. Задача определения составов пакетов заданий и групп пакетов заданий является NP-трудной, поэтому для ее решения требуется применение приближенных методов оптимизации. С целью оптимизации групп пакетов заданий реализовано построение метода формирования начальных решений по их составам, которые в дальнейшем оптимизируются. Также сформулирован алгоритм распределения по комплектам результатов выполнения пакетов заданий, полученных в течение временных интервалов ограниченной длительности. Предложен метод локальной оптимизации решений по составам групп пакетов, в соответствии с которым из групп исключаются пакеты, результаты выполнения которых не входят в комплекты, и добавляются пакеты, не включенные ни в одну из групп. Выполнена программная реализация рассмотренного метода комплексной оптимизации составов пакетов заданий, групп пакетов заданий и расписаний выполнения пакетов заданий из групп (в том числе реализация метода оптимизации составов групп пакетов заданий). С ее использованием проведены исследования особенностей рассматриваемой задачи планирования. Сформулированы выводы, касающиеся зависимости эффективности планирования выполнения пакетов заданий в многостадийных системах при введенных условиях от входных параметров задачи. Использование метода локальной оптимизации составов групп пакетов заданий позволяет в среднем на 60% увеличить количество формируемых комплектов из результатов выполнения заданий в пакетах из групп по сравнению с фиксированными группами (не предполагающими оптимизацию).
Ключевые слова: пакеты заданий, многостадийная система, комплекты результатов, расписание, ограничение длительности временных интервалов работы системы.
Optimization of task package execution planning in multi-stage systems under restrictions and the formation of sets
Computer Research and Modeling, 2021, v. 13, no. 5, pp. 917-946Modern methods of complex planning the execution of task packages in multistage systems are characterized by the presence of restrictions on the dimension of the problem being solved, the impossibility of guaranteed obtaining effective solutions for various values of its input parameters, as well as the impossibility of registration the conditions for the formation of sets from the result and the restriction on the interval duration of time of the system operating. The decomposition of the generalized function of the system into a set of hierarchically interconnected subfunctions is implemented to solve the problem of scheduling the execution of task packages with generating sets of results and the restriction on the interval duration of time for the functioning of the system. The use of decomposition made it possible to employ the hierarchical approach for planning the execution of task packages in multistage systems, which provides the determination of decisions by the composition of task groups at the first level of the hierarchy decisions by the composition of task packages groups executed during time intervals of limited duration at the second level and schedules for executing packages at the third level the hierarchy. In order to evaluate decisions on the composition of packages, the results of their execution, obtained during the specified time intervals, are distributed among the packages. The apparatus of the theory of hierarchical games is used to determine complex solutions. A model of a hierarchical game for making decisions by the compositions of packages, groups of packages and schedules of executing packages is built, which is a system of hierarchically interconnected criteria for optimizing decisions. The model registers the condition for the formation of sets from the results of the execution of task packages and restriction on duration of time intervals of its operating. The problem of determining the compositions of task packages and groups of task packages is NP-hard; therefore, its solution requires the use of approximate optimization methods. In order to optimize groups of task packages, the construction of a method for formulating initial solutions by their compositions has been implemented, which are further optimized. Moreover, a algorithm for distributing the results of executing task packages obtained during time intervals of limited duration by sets is formulated. The method of local solutions optimization by composition of packages groups, in accordance with which packages are excluded from groups, the results of which are not included in sets, and packages, that aren’t included in any group, is proposed. The software implementation of the considered method of complex optimization of the compositions of task packages, groups of task packages, and schedules for executing task packages from groups (including the implementation of the method for optimizing the compositions of groups of task packages) has been performed. With its use, studies of the features of the considered planning task are carried out. Conclusion are formulated concerning the dependence of the efficiency of scheduling the execution of task packages in multistage system under the introduced conditions from the input parameters of the problem. The use of the method of local optimization of the compositions of groups of task packages allows to increase the number of formed sets from the results of task execution in packages from groups by 60% in comparison with fixed groups (which do not imply optimization).
-
Моделирование смешанной конвекции жидкости с переменной вязкостью в частично пористом горизонтальном канале с источником тепловыделения
Компьютерные исследования и моделирование, 2019, т. 11, № 1, с. 95-107Проведено численное исследование нестационарных режимов смешанной конвекции в открытом частично пористом горизонтальном канале при наличии тепловыделяющего элемента. Наружные поверхности горизонтальных стенок конечной толщины являлись адиабатическими. В канале находилась ньютоновская теплопроводная жидкость, вязкость которой зависит от температуры по экспоненцильному закону. Дискретный тепловыделяющий теплопроводный элемент расположен внутри нижней стенки канала. Температура жидкости равна температуре твердого скелета внутри пористой вставки, и расчеты ведутся в рамках модели теплового равновесия. Пористая вставка изотропна, однородна и проницаема для жидкости. Для моделирования пористой среды использована модель Дарси–Бринкмана. Математическая модель, сформулированная в безразмерных преобразованных переменных «функция тока – завихренность скорости – температура» на основе приближения Буссинеска, реализована численно с помощью метода конечных разностей. Уравнения дисперсии завихренности и энергии решались на основе локально-одномерной схемы А.А. Самарского. Диффузионные слагаемые аппроксимировались центральными разностями, конвективные — с использованием монотонной аппроксимации А.А. Самарского. Разностные уравнения решались методом прогонки. Разностное уравнение Пуассона для функции тока решалось отдельно, с применением метода последовательной верхней релаксации. Оптимальное значение параметра релаксации подбиралось на основе вычислительных экспериментов. Разработанная вычислительная модель была протестирована на множестве равномерных сеток, а также верифицирована путем сравнения полученных результатов при решении модельной задачи с данными других авторов.
Численные исследования нестационарных режимов смешанной конвекции жидкости с переменной вязкостью в горизонтальном канале с тепловыделяющим источником были проведены при следующих значениях безразмерных параметров: $\mathrm{Pr} = 7.0$, $\varepsilon = 0.8$, $\mathrm{Gr} = 10^5$, $C = 0-1$, $10^{-5} < \mathrm{Da} < 10^{-1}$, $50 < \mathrm{Re} < 500$, $\delta = l/H = 0.6-3$. Все распределения изолиний функции тока и температуры, а также зависимости среднего числа Нуссельта и средней температуры были получены в стационарном режиме, когда наблюдается установление картины течения и теплопереноса. В результате анализа установлено, что введение пористой вставки позволяет интенсифицировать теплосъем с поверхности источника энергии. Увеличение размеров пористой ставки, а также использование рабочих сред с разными теплофизическими характеристиками приводят к снижению температуры в источнике энергии.
Ключевые слова: смешанная конвекция, зависящая от температуры вязкость, тепловыделяющий источник, пористая среда, открытый канал, метод конечных разностей.
Simulation of mixed convection of a variable viscosity fluid in a partially porous horizontal channel with a heat-generating source
Computer Research and Modeling, 2019, v. 11, no. 1, pp. 95-107Просмотров за год: 34.Numerical study of unsteady mixed convection in an open partially porous horizontal channel with a heatgenerating source was performed. The outer surfaces of horizontal walls of finite thickness were adiabatic. In the channel there was a Newtonian heat-conducting fluid with a temperature-dependent viscosity. The discrete heatconducting and heat-generating source is located inside the bottom wall. The temperature of the fluid phase was equal to the temperature of the porous medium, and calculations were performed using the local thermal equilibrium model. The porous insertion is isotropic, homogeneous and permeable to fluid. The Darcy–Brinkman model was used to simulate the transport process within the porous medium. Governing equations formulated in dimensionless variables “stream function – vorticity – temperature” using the Boussinesq approximation were solved numerically by the finite difference method. The vorticity dispersion equation and energy equation were solved using locally one-dimensional Samarskii scheme. The diffusive terms were approximated by central differences, while the convective terms were approximated using monotonic Samarskii scheme. The difference equations were solved by the Thomas algorithm. The approximated Poisson equation for the stream function was solved separately by successive over-relaxation method. Optimal value of the relaxation parameter was found on the basis of computational experiments. The developed computational code was tested using a set of uniform grids and verified by comparing the results obtained of other authors.
Numerical analysis of unsteady mixed convection of variable viscosity fluid in the horizontal channel with a heat-generating source was performed for the following parameters: $\mathrm{Pr} = 7.0$, $\varepsilon = 0.8$, $\mathrm{Gr} = 10^5$, $C = 0-1$, $10^{-5} < \mathrm{Da} < 10^{-1}$, $50 < \mathrm{Re} < 500$, $\delta = l/H = 0.6-3$. Distributions of the isolines of the stream function, temperature and the dependences of the average Nusselt number and the average temperature inside the heater were obtained in a steady-state regime, when the stationary picture of the flow and heat transfer is observed. As a result we showed that an addition of a porous insertion leads to an intensification of heat removal from the surface of the energy source. The increase in the porous insertion sizes and the use of working fluid with different thermal characteristics, lead to a decrease in temperature inside the source.
-
Решатель уравнения Больцмана на неструктурированных пространственных сетках
Компьютерные исследования и моделирование, 2019, т. 11, № 3, с. 427-447Целью данной работы является создание достаточно универсальной вычислительной программы (решателя) кинетического уравнения Больцмана для моделирования течений разреженного газа в устройствах сложной формы. Подробно описывается структура решателя, а его эффективность демонстрируется на примере расчета современной конструкции многотрубочного насоса Кнудсена. Решение уравнения Больцмана выполняется на фиксированных пространственной и скоростной сетках с помощью метода расщепления по физическим процессам. Дифференциальный оператор переноса аппроксимируется методом конечных разностей. Вычисление интеграла столкновений производится на основе консервативного проекционного метода.
Пространственная неструктурированная сетка строится с помощью внешнего генератора сеток и может включать в себя призмы, тетраэдры, гексаэдры и пирамиды. Сетка сгущается в областях течения с наибольшими градиентами рассчитываемых величин. Трехмерная скоростная сетка состоит из кубических ячеек равного объема.
Большой объем вычислений требует эффективного распараллеливания алгоритма, что реализовано на основе методики Message Passing Interface (MPI). Передача информации от одного узла MPI к другому осуществляется как разновидность граничного условия — таким образом, каждый MPI узел может хранить только ту часть сетки, которая имеет отношение конкретно к нему.
В результате получен график разности давлений в двух резервуарах, соединенных многотрубочным насосом Кнудсена в зависимости от числа Кнудсена, т. е. получена численными методами характеристика, ответственная за качество работы термомолекулярного микронасоса. Также показаны распределения давления, температуры и концентрации газа в установившемся состоянии внутри резервуаров и самого микронасоса.
Корректность работы солвера проверяется на тестах с распределением температуры газа между двух нагретых до разной температуры пластинок, а также в тесте с сохранением общей массы газа.
Корректность полученных данных для многотрубочного насоса Кнудсена проверяется на более точных скоростной и пространственной сетках, а также при использовании большего количества столкновений в интеграле столкновений за шаг.
Ключевые слова: уравнение Больцмана, эффект Кнудсена, неструктурированная сетка, микронасос, функция распределения, интеграл столкновений, проекционный метод.
The Solver of Boltzmann equation on unstructured spatial grids
Computer Research and Modeling, 2019, v. 11, no. 3, pp. 427-447Просмотров за год: 13.The purpose of this work is to develop a universal computer program (solver) which solves kinetic Boltzmann equation for simulations of rarefied gas flows in complexly shaped devices. The structure of the solver is described in details. Its efficiency is demonstrated on an example of calculations of a modern many tubes Knudsen pump. The kinetic Boltzmann equation is solved by finite-difference method on discrete grid in spatial and velocity spaces. The differential advection operator is approximated by finite difference method. The calculation of the collision integral is based on the conservative projection method.
In the developed computational program the unstructured spatial mesh is generated using GMSH and may include prisms, tetrahedrons, hexahedrons and pyramids. The mesh is denser in areas of flow with large gradients of gas parameters. A three-dimensional velocity grid consists of cubic cells of equal volume.
A huge amount of calculations requires effective parallelization of the algorithm which is implemented in the program with the use of Message Passing Interface (MPI) technology. An information transfer from one node to another is implemented as a kind of boundary condition. As a result, every MPI node contains the information about only its part of the grid.
The main result of the work is presented in the graph of pressure difference in 2 reservoirs connected by a multitube Knudsen pump from Knudsen number. This characteristic of the Knudsen pump obtained by numerical methods shows the quality of the pump. Distributions of pressure, temperature and gas concentration in a steady state inside the pump and the reservoirs are presented as well.
The correctness of the solver is checked using two special test solutions of more simple boundary problems — test with temperature distribution between 2 planes with different temperatures and test with conservation of total gas mass.
The correctness of the obtained data for multitube Knudsen pump is checked using denser spatial and velocity grids, using more collisions in collision integral per time step.
-
Прогнозирование потери несущей способности пологих выпуклых оболочек на основе анализа нелинейных колебаний
Компьютерные исследования и моделирование, 2023, т. 15, № 5, с. 1189-1205Задачи потери устойчивости тонких упругих оболочек снова стали актуальными, так как в последние годы обнаружено несоответствие между стандартами многих стран по определению нагрузок, вызывающих потерю несущей способности пологих оболочек, и результатами экспериментов по испытаниям тонкостенных авиационных конструкций, изготовленных из высокопрочных сплавов. Основное противоречие состоит в том, что предельные внутренние напряжения, при которых наблюдается потеря устойчивости (хлопок) оболочек, оказываются меньше тех, которые предсказывает принятая теория расчета, отраженная в стандартах США и Европы. Действующие нормативные акты основаны на статической теории пологих оболочек, предложенной в 1930-е годы: в рамках нелинейной теории упругости для тонкостенных структур выделяются устойчивые решения, значительно отличающиеся от форм равновесия, присущих небольшим начальным нагрузкам. Минимальная величина нагрузки, при которой существует альтернативная форма равновесия (низшая критическая нагрузка), принималась в качестве предельно допустимой. В 1970-е годы было установлено, что такой подход оказывается неприемлемым при сложных загружениях. Подобные случаи ранее не встречались на практике, сейчас они появились на более тонких изделиях, эксплуатируемых в сложных условиях. Поэтому необходим пересмотр исходных теоретических положений по оценке несущей способности. Основой теории могут служить недавние математические результаты, установившие асимптотическую близость расчетов по двум схемам: трехмерной динамической теории упругости и динамической теории пологих выпуклых оболочек. В предлагаемой работе вначале формулируется динамическая теория пологих оболочек, которая затем сводится к одному разрешающему интегро-дифференциальному уравнению (после построения специальной функции Грина). Показано, что полученное нелинейное уравнение допускает разделение переменных, имеет множество периодических по времени решений, которые удовлетворяют уравнению Дуффинга «с мягкой пружиной». Это уравнение хорошо изучено, его численный анализ позволяет находить амплитуду и период колебаний в зависимости от свойств функции Грина. Если вызвать колебания оболочки с помощью пробной гармонической по времени нагрузки, то можно измерить перемещения точек поверхности в момент максимальной амплитуды. Предлагается экспериментальная установка, в которой генерируются резонансные колебания пробной нагрузкой, направленной по нормали к поверхности. Экспериментальные измерения перемещений оболочки, а также амплитуды и периода колебаний дают возможность рассчитать коэффициент запаса несущей способности конструкции неразрушающим методом в условиях эксплуатации.
Ключевые слова: динамические уравнения пологих оболочек, нелинейные колебания, тензор Грина, уравнение Дуффинга, коэффициент запаса, прогноз потери устойчивости.
Buckling prediction for shallow convex shells based on the analysis of nonlinear oscillations
Computer Research and Modeling, 2023, v. 15, no. 5, pp. 1189-1205Buckling problems of thin elastic shells have become relevant again because of the discrepancies between the standards in many countries on how to estimate loads causing buckling of shallow shells and the results of the experiments on thinwalled aviation structures made of high-strength alloys. The main contradiction is as follows: the ultimate internal stresses at shell buckling (collapsing) turn out to be lower than the ones predicted by the adopted design theory used in the USA and European standards. The current regulations are based on the static theory of shallow shells that was put forward in the 1930s: within the nonlinear theory of elasticity for thin-walled structures there are stable solutions that significantly differ from the forms of equilibrium typical to small initial loads. The minimum load (the lowest critical load) when there is an alternative form of equilibrium was used as a maximum permissible one. In the 1970s it was recognized that this approach is unacceptable for complex loadings. Such cases were not practically relevant in the past while now they occur with thinner structures used under complex conditions. Therefore, the initial theory on bearing capacity assessments needs to be revised. The recent mathematical results that proved asymptotic proximity of the estimates based on two analyses (the three-dimensional dynamic theory of elasticity and the dynamic theory of shallow convex shells) could be used as a theory basis. This paper starts with the setting of the dynamic theory of shallow shells that comes down to one resolving integrodifferential equation (once the special Green function is constructed). It is shown that the obtained nonlinear equation allows for separation of variables and has numerous time-period solutions that meet the Duffing equation with “a soft spring”. This equation has been thoroughly studied; its numerical analysis enables finding an amplitude and an oscillation period depending on the properties of the Green function. If the shell is oscillated with the trial time-harmonic load, the movement of the surface points could be measured at the maximum amplitude. The study proposes an experimental set-up where resonance oscillations are generated with the trial load normal to the surface. The experimental measurements of the shell movements, the amplitude and the oscillation period make it possible to estimate the safety factor of the structure bearing capacity with non-destructive methods under operating conditions.
-
Хаотизация течения под действием объемной силы
Компьютерные исследования и моделирование, 2024, т. 16, № 4, с. 883-912В предлагаемой статье приводятся результаты аналитического и компьютерного исследования хаотической эволюции регулярного поля скорости, возникающего под действием крупномасштабной гармонической вынуждающей силы. Авторами получено аналитическое решение для функции тока течения и ее производных величин (скорости, завихренности, кинетической энергии, энстрофии и палинстрофии). Проведено численное моделирование эволюции течения с помощью пакета программ OpenFOAM (на основе модели несжимаемой среды), а также двух собственных реализаций, использующих приближение слабой сжимаемости (схемы КАБАРЕ и схемы МакКормака). Расчеты проводились на последовательности вложенных сеток с 642, 1282, 2562, 5122, 10242 ячейками для двух характерных (асимптотических) чисел Рейнольдса Rea, характеризующих ламинарную и турбулентную эволюцию течения соответственно. Моделирование показало, что разрушение аналитического решения происходит в обоих случаях. Энергетические характеристики течения обсуждаются на основе кривых энергии, а также скоростей диссипации. Для самой подробной сетки эта величина оказывается на несколько порядков меньше своего гидродинамического (вязкого) аналога. Разрушение регулярной структуры течения наблюдается для любого из численных методов, в том числе на поздних стадиях ламинарной эволюции, когда полученные распределения близки к аналитическим значениям. Можно предположить, что предпосылкой к развитию неустойчивости выступает ошибка, накапливаемая в процессе счета. Эта ошибка приводит к неравномерностям в распределении завихренности и, как следствие, к появлению вихрей различной интенсивности, взаимодействие которых приводит к хаотизации течения. Для исследования процессов производства завихренности мы использовали две интегральные величины, определяемые на ее основе, — интегральные энстрофию ($\zeta$) и палинстрофию $(P)$. Постановка задачи с периодическими граничными условиями позволяет установить простую связь между этими величинами. Кроме того, $\zeta$ может выступать в качестве меры вихреразрешающей способности численного метода, а палинстрофия определяет степень производства мелкомасштабной завихренности.
Ключевые слова: турбулентность, завихренность, энстрофия, палинстрофия, скорость диссипации, схема КАБАРЕ, схема МакКормака, пакет OpenFOAM.
Сhaotic flow evolution arising in a body force field
Computer Research and Modeling, 2024, v. 16, no. 4, pp. 883-912This article presents the results of an analytical and computer study of the chaotic evolution of a regular velocity field generated by a large-scale harmonic forcing. The authors obtained an analytical solution for the flow stream function and its derivative quantities (velocity, vorticity, kinetic energy, enstrophy and palinstrophy). Numerical modeling of the flow evolution was carried out using the OpenFOAM software package based on incompressible model, as well as two inhouse implementations of CABARET and McCormack methods employing nearly incompressible formulation. Calculations were carried out on a sequence of nested meshes with 642, 1282, 2562, 5122, 10242 cells for two characteristic (asymptotic) Reynolds numbers characterizing laminar and turbulent evolution of the flow, respectively. Simulations show that blow-up of the analytical solution takes place in both cases. The energy characteristics of the flow are discussed relying upon the energy curves as well as the dissipation rates. For the fine mesh, this quantity turns out to be several orders of magnitude less than its hydrodynamic (viscous) counterpart. Destruction of the regular flow structure is observed for any of the numerical methods, including at the late stages of laminar evolution, when numerically obtained distributions are close to analytics. It can be assumed that the prerequisite for the development of instability is the error accumulated during the calculation process. This error leads to unevenness in the distribution of vorticity and, as a consequence, to the variance vortex intensity and finally leads to chaotization of the flow. To study the processes of vorticity production, we used two integral vorticity-based quantities — integral enstrophy ($\zeta$) and palinstrophy $(P)$. The formulation of the problem with periodic boundary conditions allows us to establish a simple connection between these quantities. In addition, $\zeta$ can act as a measure of the eddy resolution of the numerical method, and palinstrophy determines the degree of production of small-scale vorticity.
Keywords: turbulence, vorticity, enstrophy, palinstrophy, dissipation rate, CABARET scheme, McCormack scheme, OpenFOAM. -
Определение характеристик случайного процесса путем сравнения со значениями на основе моделей законов распределения
Компьютерные исследования и моделирование, 2025, т. 17, № 6, с. 1105-1118Эффективность систем связи и передачи данных (ССиПД), являющихся неотъемлемой составляющей современных систем практически в любой области науки и техники, во многом зависит от стабильности частоты формируемых сигналов. Формируемые в ССиПД сигналы могут рассматриваться как процессы, частота которых изменяется под действием совокупности внешних воздействий. Изменение частоты сигналов приводит к уменьшению отношения «сигнал/шум» (ОСШ) и, соответственно, ухудшению характеристик ССиПД, таких как вероятность битовой ошибки, пропускная способность. Описание таких изменений частоты сигналов наиболее удобно рассматривать как случайные процессы, аппарат которых находит широкое применение при построении математических моделей, описывающих функционирование систем и устройств в различных областях науки и техники. При этом во многих случаях характеристики случайного процесса, такие как закон распределения, математическое ожидание и дисперсия, могут являться неизвестными или известными с погрешностями, не позволяющими получить приемлемые по точности оценки параметров сигналов. В статье предлагается алгоритм решения задачи по определению характеристик случайного процесса (частоты сигнала) на основе набора отсчетов его частоты, позволяющих определить выборочное среднее, выборочную дисперсию и закон распределения отклонений частоты в генеральной совокупности. Основой данного алгоритма является сравнение измеренных на некотором временном интервале значений наблюдаемого случайного процесса с набором того же количества случайных значений, сформированных на основе модельных законов распределения. В качестве модельных законов распределения могут рассматриваться законы распределения, принятые на основе математических моделей этих систем и устройств или соответствующие аналогичным системам и устройствам. В качестве математического ожидания и дисперсии при формировании набора случайных значений для принятого модельного закона распределения принимаются выборочные среднее значение и дисперсия, полученные по результатам измерений наблюдаемого случайного процесса. Особенность алгоритма заключается в проведении сравнения упорядоченных по возрастанию или убыванию измеренных значений наблюдаемого случайного процесса и сформированных наборов значений в соответствии с принятыми моделями законов распределения. Приведены результаты математического моделирования, иллюстрирующие применение данного алгоритма.
Ключевые слова: случайный процесс, характеристики случайного процесса, выборочное среднее значение, выборочная дисперсия, корреляция упорядоченных наборов отсчетов случайных значений.
Determining the characteristics of a random process by comparing them with values based on models of distribution laws
Computer Research and Modeling, 2025, v. 17, no. 6, pp. 1105-1118The effectiveness of communication and data transmission systems (CSiPS), which are an integral part of modern systems in almost any field of science and technology, largely depends on the stability of the frequency of the generated signals. The signals generated in the CSiPD can be considered as processes, the frequency of which changes under the influence of a combination of external influences. Changing the frequency of the signals leads to a decrease in the signal-tonoise ratio (SNR) and, consequently, a deterioration in the characteristics of the signal-to-noise ratio, such as the probability of a bit error and bandwidth. It is most convenient to consider the description of such changes in the frequency of signals as random processes, the apparatus of which is widely used in the construction of mathematical models describing the functioning of systems and devices in various fields of science and technology. Moreover, in many cases, the characteristics of a random process, such as the distribution law, mathematical expectation, and variance, may be unknown or known with errors that do not allow us to obtain estimates of the signal parameters that are acceptable in accuracy. The article proposes an algorithm for solving the problem of determining the characteristics of a random process (signal frequency) based on a set of samples of its frequency, allowing to determine the sample mean, sample variance and the distribution law of frequency deviations in the general population. The basis of this algorithm is the comparison of the values of the observed random process measured over a certain time interval with a set of the same number of random values formed on the basis of model distribution laws. Distribution laws based on mathematical models of these systems and devices or corresponding to similar systems and devices can be considered as model distribution laws. When forming a set of random values for the accepted model distribution law, the sample mean value and variance obtained from the measurement results of the observed random process are used as mathematical expectation and variance. The feature of the algorithm is to compare the measured values of the observed random process ordered in ascending or descending order and the generated sets of values in accordance with the accepted models of distribution laws. The results of mathematical modeling illustrating the application of this algorithm are presented.
Журнал индексируется в Scopus
Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"





