Все выпуски
- 2025 Том 17
- 2024 Том 16
- 2023 Том 15
- 2022 Том 14
- 2021 Том 13
- 2020 Том 12
- 2019 Том 11
- 2018 Том 10
- 2017 Том 9
- 2016 Том 8
- 2015 Том 7
- 2014 Том 6
- 2013 Том 5
- 2012 Том 4
- 2011 Том 3
- 2010 Том 2
- 2009 Том 1
-
Метод представления дифракционных изображений XFEL для классификации, индексации и поиска
Компьютерные исследования и моделирование, 2015, т. 7, № 3, с. 631-639В работе представлены результаты применения алгоритмов машинного обучения: метода главных компонент и метода опорных векторов для классификации дифракционных изображений, полученных в экспериментах на лазерах на свободных электронах. Показана высокая эффективность применения такого подхода с использованием модельных данных дифракции лазерного пучка на капсиде аденовируса и вируса катаральной лихорадки, в которых учтены условия реального эксперимента на лазерах на свободных электронах, такие как шум и особенности используемых детекторов.
XFEL diffraction patterns representation method for classification, indexing and search
Computer Research and Modeling, 2015, v. 7, no. 3, pp. 631-639Просмотров за год: 6.The paper presents the results of application of machine learning methods: principle component analysis and support vector machine for classification of diffraction images produced in experiments at free-electron lasers. High efficiency of this approach presented by application to simulated data of adenovirus capsid and bluetongue virus core. This dataset were simulated with taking into account the real conditions of the experiment on lasers free electrons such as noise and features of used detectors.
-
Технология формирования каталога информационного фонда
Компьютерные исследования и моделирование, 2015, т. 7, № 3, с. 661-673В статье рассматривается подход совершенствования технологий обработки информации на основе логико-семантической сети (ЛСС) «Вопрос–ответ–реакция», направленный на формирование и поддержку каталожной службы, обеспечивающей эффективный поиск ответов на вопросы [Большой энциклопедический словарь, 1998; Касавин, 2009]. В основу такой каталожной службы положены семантические связи, отражающие логику изложения авторской мысли в рамках данной публикации, темы, предметной области. Структурирование и поддержка этих связей позволят работать с полем смыслов, обеспечив новые возможности для исследования корпуса документов электронных библиотек (ЭБ) [Касавин, 2009]. Формирование каталога информационного фонда (ИФ) включает: формирование лексического словаря ИФ; построение дерева классификации ИФ по нескольким основаниям; классификация ИФ по вопросно-ответным темам; формирование поисковых запросов, адекватных дереву классификации вопросно-ответных тем (таблица соответствия «запрос → ответ ↔ {вопрос–ответ–реакция}»); автоматизированный поиск запросов по тематическим поисковым машинам; анализ ответов на запросы; поддержка каталога ЛСС на этапе эксплуатации (пополнение и уточнение каталога). Технология рассматривается для двух ситуаций: 1) ИФ уже сформирован; 2) ИФ отсутствует, его необходимо создать.
Ключевые слова: информационный фонд, Большие Данные, информационный поиск, пертинентность, навигация, информационно-поисковая система, семантические связи, логико-семантическая сеть «вопрос–ответ–реакция».
Cataloging technology of information fund
Computer Research and Modeling, 2015, v. 7, no. 3, pp. 661-673Просмотров за год: 3.The article discusses the approach to the improvement of information processing technology on the basis of logical-semantic network (LSN) Question–Answer–Reaction aimed at formation and support of the catalog service providing efficient search of answers to questions.
The basis of such a catalog service are semantic links, reflecting the logic of presentation of the author's thoughts within the framework this publication, theme, subject area. Structuring and support of these links will allow working with a field of meanings, providing new opportunities for the study the corps of digital libraries documents. Cataloging of the information fund includes: formation of lexical dictionary; formation of the classification tree for several bases; information fund classification for question–answer topics; formation of the search queries that are adequate classification trees the question–answer; automated search queries on thematic search engines; analysis of the responses to queries; LSN catalog support during the operational phase (updating and refinement of the catalog). The technology is considered for two situations: 1) information fund has already been formed; 2) information fund is missing, you must create it.
-
Особенности управления данными в DIRAC
Компьютерные исследования и моделирование, 2015, т. 7, № 3, с. 741-744Целью данной работы является ознакомление с технологиями хранения больших данных и перспективами развития технологий хранения для распределенных вычислений. Приведен анализ популярных технологий хранения и освещаются возможные ограничения использования.
Основными проблемами развития технологий хранения данных являются хранение сверхбольших объемов данных, отсутствие качества в обработке таких данных, масштабируемость, отсутствие быстрого доступа к данным и отсутствие реализации интеллектуального поиска данных.
В работе рассматриваются особенности организации системы управления данными (DMS) программного продукта DIRAC. Приводится описание устройства, функциональности и способов работы с сервисом передачи данных (Data transfer service) для экспериментов физики высоких энергий, которые требуют вычисления задач с широким спектром требований с точки зрения загрузки процессора, доступа к данным или памяти и непостоянной загрузкой использования ресурсов.
Ключевые слова: распределенное хранение данных, Big Data, программное обеспечение, DIRAC, сервис передачи данных, система управления данными.Просмотров за год: 2.The report presents an analysis of Big Data storage solutions in different directions. The purpose of this paper is to introduce the technology of Big Data storage, prospects of storage technologies, for example, the software DIRAC. The DIRAC is a software framework for distributed computing.
The report considers popular storage technologies and lists their limitations. The main problems are the storage of large data, the lack of quality in the processing, scalability, the lack of rapid availability, the lack of implementation of intelligent data retrieval.
Experimental computing tasks demand a wide range of requirements in terms of CPU usage, data access or memory consumption and unstable profile of resource use for a certain period. The DIRAC Data Management System (DMS), together with the DIRAC Storage Management System (SMS) provides the necessary functionality to execute and control all the activities related with data.
Журнал индексируется в Scopus
Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"





