Все выпуски
- 2025 Том 17
- 2024 Том 16
- 2023 Том 15
- 2022 Том 14
- 2021 Том 13
- 2020 Том 12
- 2019 Том 11
- 2018 Том 10
- 2017 Том 9
- 2016 Том 8
- 2015 Том 7
- 2014 Том 6
- 2013 Том 5
- 2012 Том 4
- 2011 Том 3
- 2010 Том 2
- 2009 Том 1
-
Введение в теорию сложных сетей
Компьютерные исследования и моделирование, 2010, т. 2, № 2, с. 121-141В последние годы сложилось новое направление изучения сложных систем, рассматривающее их как сетевые структуры. Узлы в таких сетях представляют собой элементы этих сложных систем, а связи между узлами – взаимодействия между элементами. Эти исследования имеют дело с реальными системами, такими как биологические (метаболические сети клеток, функциональные сети мозга, экологические системы), технические (Интернет, WWW, сети компаний сотовой связи, сети электростанций), социальные (сети научного сотрудничества, сети актеров кино, сети знакомств). Оказалось, что эти сети имеют более сложную архитектуру, чем классические случайные сети. В предлагаемом обзоре даются основные понятия теории сложных сетей, а также кратко описаны основные направления изучения реальных сетевых структур.
Introduction to the theory of complex networks
Computer Research and Modeling, 2010, v. 2, no. 2, pp. 121-141Просмотров за год: 53. Цитирований: 107 (РИНЦ).There was a new direction of studying of the complex systems last years, considering them as networks. Nodes in such networks represent elements of these complex systems, and links between nodes – interactions between elements. These researches deal with real systems, such as biological (metabolic networks of cells, functional networks of a brain, ecological systems), technical (the Internet, WWW, networks of the companies of cellular communication, power grids), social (networks of scientific cooperation, a network of movie actors, a network of acquaintances). It has appeared that these networks have more complex architecture, than classical random networks. In the offered review the basic concepts theory of complex networks are given, and the basic directions of studying of real networks structures are also briefly described.
-
Теория самоорганизации. На пороге IV парадигмы
Компьютерные исследования и моделирование, 2013, т. 5, № 3, с. 315-336В работе представлены ключевые проблемы теории самоорганизации или синергетики, а также прогноз ее развития на ближайшие десятилетия. Показано, что будущее этого междисциплинарного подхода, вероятно, определит создание и становление сетевой парадигмы. Рассмотрены постановки нескольких фундаментальных научных и принципиальных технологических задач, а также конкретные результаты, приводящие к этим выводам.
Ключевые слова: синергетика, сетевая парадигма, самоорганизация, когнитивные центры, сетевая социология, малые миры, сетецентрические войны, когнитивные пределы, кризис вычислений, сложность, самоорганизованная критичность.
Theory of self-organization. On the cusp of IV paradigm
Computer Research and Modeling, 2013, v. 5, no. 3, pp. 315-336Просмотров за год: 9. Цитирований: 19 (РИНЦ).We discuss key problems of self-organization theory, synergetics, and the prospects of its development for the next decades. We show that the future of this interdisciplinary approach probably is defined by the development of new network paradigm. We consider statements of several fundamental scientific and principle technological problems and concrete results giving rise to these conclusions.
-
Разработка сетевых вычислительных моделей для исследования нелинейных волновых процессов на графах
Компьютерные исследования и моделирование, 2019, т. 11, № 5, с. 777-814В различных приложениях возникают задачи, моделируемые уравнениями в частных производных на графах (сетях, деревьях). Для исследования данных проблем и возникающих различных экстремальных ситуаций, для задач проектирования и оптимизации сетей различных типов в данной работе построена вычислительная модель, основанная на решении соответствующих краевых задач для нелинейных уравнений в частных производных гиперболического типа на графах (сетях, деревьях). В качестве приложений были выбраны три различные задачи, решаемые в рамках общего подхода сетевых вычислительных моделей. Первая — это моделирование движения транспортных потоков. При решении данной задачи использовался макроскопический подход, при котором транспортный поток описывается нелинейной системой гиперболических уравнений второго порядка. Проведенные расчеты и полученные результаты показали, что разработанная в рамках предложенного подхода модель хорошо воспроизводит реальную ситуацию на различных участках транспортной сети г. Москвы на значительных временных интервалах, а также может быть использована для выбора наиболее оптимальной стратегии организации дорожного движения в городе. Вторая — моделирование потоков данных в компьютерных сетях. В этой задаче потоки данных различных соединений в пакетной сети передачи данных моделировались в виде несмешивающихся потоков сплошной среды. Предложены концептуальная и математическая модели сети. Проведено численное моделирование в сравнении с системой имитационного моделирования сети NS-2. Полученные результаты показали, что в сравнении с пакетной моделью NS-2 разработанная нами потоковая модель демонстрирует значительную экономию вычислительных ресурсов, обеспечивая при этом хорошую степень подобия, и позволяет моделировать поведение сложных глобально распределенных IP-сетей передачи данных. Третья — моделирование распространения газовых примесей в вентиляционных сетях. Была разработана вычислительная математическая модель распространения мелкодисперсных или газовых примесей в вентиляционных сетях с использованием уравнений газовой динамики путем численного сопряжения областей разной размерности. Проведенные расчеты показали, что модель с хорошей точностью позволяет определять распределение газодинамических параметров в трубопроводной сети и решать задачи динамического управления вентиляцией.
Ключевые слова: уравнения в частных производных, графы, вычислительные модели, уравнения гиперболического типа, численное моделирование, граничные условия.
Development of network computational models for the study of nonlinear wave processes on graphs
Computer Research and Modeling, 2019, v. 11, no. 5, pp. 777-814In various applications arise problems modeled by nonlinear partial differential equations on graphs (networks, trees). In order to study such problems and various extreme situations arose in the problems of designing and optimizing networks developed the computational model based on solving the corresponding boundary problems for partial differential equations of hyperbolic type on graphs (networks, trees). As applications, three different problems were chosen solved in the framework of the general approach of network computational models. The first was modeling of traffic flow. In solving this problem, a macroscopic approach was used in which the transport flow is described by a nonlinear system of second-order hyperbolic equations. The results of numerical simulations showed that the model developed as part of the proposed approach well reproduces the real situation various sections of the Moscow transport network on significant time intervals and can also be used to select the most optimal traffic management strategy in the city. The second was modeling of data flows in computer networks. In this problem data flows of various connections in packet data network were simulated as some continuous medium flows. Conceptual and mathematical network models are proposed. The numerical simulation was carried out in comparison with the NS-2 network simulation system. The results showed that in comparison with the NS-2 packet model the developed streaming model demonstrates significant savings in computing resources while ensuring a good level of similarity and allows us to simulate the behavior of complex globally distributed IP networks. The third was simulation of the distribution of gas impurities in ventilation networks. It was developed the computational mathematical model for the propagation of finely dispersed or gas impurities in ventilation networks using the gas dynamics equations by numerical linking of regions of different sizes. The calculations shown that the model with good accuracy allows to determine the distribution of gas-dynamic parameters in the pipeline network and solve the problems of dynamic ventilation management.
-
Традиционная классификация сложных сетей на биологические, технологические и социальные является неполной, поскольку существует огромное разнообразие продуктов художественного творчества, структуру которых также можно представить в виде сетей. В статье дан обзор исследований сложных сетей, моделирующих некоторые литературные, музыкальные и живописные произведения. Соответствующие сети предложено называть когнитивными. Обсуждаются основные направления изучения таких сетевых структур.
Просмотров за год: 6. Цитирований: 16 (РИНЦ).Traditional classification of real complex networks on biological, technological and social is incomplete, as there is a huge variety of artworks, which structure also can be presented in the form of networks. In this paper the review of researches of the complex networks, modeling some literary, musical and painting works is given. Corresponding networks are offered for naming cognitive networks. The possible directions of studying of such networks are discussed.
-
Подход к решению невыпуклой равномерно вогнутой седловой задачи со структурой
Компьютерные исследования и моделирование, 2022, т. 14, № 2, с. 225-237В последнее время седловым задачам уделяется большое внимание благодаря их мощным возможностям моделирования для множества задач из различных областей. Приложения этих задач встречаются в многочисленных современных прикладных областях, таких как робастная оптимизация, распределенная оптимизация, теория игр и~приложения машинного обучения, такие как, например, минимизация эмпирического риска или обучение генеративно-состязательных сетей. Поэтому многие исследователи активно работают над разработкой численных методов для решения седловых задач в самых разных предположениях. Данная статья посвящена разработке численного метода решения седловых задач в невыпуклой равномерно вогнутой постановке. В этой постановке считается, что по группе прямых переменных целевая функция может быть невыпуклой, а по группе двойственных переменных задача является равномерно вогнутой (это понятие обобщает понятие сильной вогнутости). Был изучен более общий класс седловых задач со сложной композитной структурой и гёльдерово непрерывными производными высшего порядка. Для решения рассматриваемой задачи был предложен подход, при котором мы сводим задачу к комбинации двух вспомогательных оптимизационных задач отдельно для каждой группы переменных: внешней задачи минимизации и~внутренней задачи максимизации. Для решения внешней задачи минимизации мы используем адаптивный градиентный метод, который применим для невыпуклых задач, а также работает с неточным оракулом, который генерируется путем неточного решения внутренней задачи максимизации. Для решения внутренней задачи максимизации мы используем обобщенный ускоренный метод с рестартами, который представляет собой метод, объединяющий методы ускорения высокого порядка для минимизации выпуклой функции, имеющей гёльдерово непрерывные производные высшего порядка. Важной компонентой проведенного анализа сложности предлагаемого алгоритма является разделение оракульных сложностей на число вызовов оракула первого порядка для внешней задачи минимизации и оракула более высокого порядка для внутренней задачи максимизации. Более того, оценивается сложность всего предлагаемого подхода.
Ключевые слова: седловая задача, невыпуклая оптимизация, равномерно выпуклая функция, неточный оракул, метод высшего порядка.
An approach for the nonconvex uniformly concave structured saddle point problem
Computer Research and Modeling, 2022, v. 14, no. 2, pp. 225-237Recently, saddle point problems have received much attention due to their powerful modeling capability for a lot of problems from diverse domains. Applications of these problems occur in many applied areas, such as robust optimization, distributed optimization, game theory, and many applications in machine learning such as empirical risk minimization and generative adversarial networks training. Therefore, many researchers have actively worked on developing numerical methods for solving saddle point problems in many different settings. This paper is devoted to developing a numerical method for solving saddle point problems in the nonconvex uniformly-concave setting. We study a general class of saddle point problems with composite structure and H\"older-continuous higher-order derivatives. To solve the problem under consideration, we propose an approach in which we reduce the problem to a combination of two auxiliary optimization problems separately for each group of variables, the outer minimization problem w.r.t. primal variables, and the inner maximization problem w.r.t the dual variables. For solving the outer minimization problem, we use the Adaptive Gradient Method, which is applicable for nonconvex problems and also works with an inexact oracle that is generated by approximately solving the inner problem. For solving the inner maximization problem, we use the Restarted Unified Acceleration Framework, which is a framework that unifies the high-order acceleration methods for minimizing a convex function that has H\"older-continuous higher-order derivatives. Separate complexity bounds are provided for the number of calls to the first-order oracles for the outer minimization problem and higher-order oracles for the inner maximization problem. Moreover, the complexity of the whole proposed approach is then estimated.
-
Iterative diffusion importance: advancing edge criticality evaluation in complex networks
Компьютерные исследования и моделирование, 2025, т. 17, № 5, с. 783-797This paper is devoted to the problem of edge criticality identification and ranking in complex networks, which is a part of a modern research direction in the novel network science. The diffusion importance belongs to the set of acknowledged methods that help to identify the significant connections in the graph that are critical to retaining structural integrity. In the present work, we develop the Iterative Diffusion Importance algorithm that is based on the re-estimation of critical topological features at each step of the graph deconstruction. The Iterative Diffusion Importance has been compared with methods such as diffusion importance and degree product, which are two very well-known benchmark algorithms. As for benchmark networks, we tested the Iterative Diffusion Importance on three standard networks, such as Zachary’s Karate Club, the American Football Network, and the Dolphins Network, which are often used for algorithm efficiency evaluation and are different in size and density. Also, we proposed a new benchmark network representing the airplane communication between Japan and the US. The numerical experiment on finding the ranking of critical edges and the following network decomposition demonstrated that the proposed Iterative Diffusion Importance exceeds the conventional diffusion importance by the efficiency for 2–35% depending on the network complexity, the number of nodes, and the number of edges. The only drawback of the Iterative Diffusion Importance is an increase in computation complexity and hencely in the runtime, but this drawback can be easily compensated for by the preliminary planning of the network deconstruction or protection and by reducing the re-evaluation frequency of the iterative process.
Iterative diffusion importance: advancing edge criticality evaluation in complex networks
Computer Research and Modeling, 2025, v. 17, no. 5, pp. 783-797This paper is devoted to the problem of edge criticality identification and ranking in complex networks, which is a part of a modern research direction in the novel network science. The diffusion importance belongs to the set of acknowledged methods that help to identify the significant connections in the graph that are critical to retaining structural integrity. In the present work, we develop the Iterative Diffusion Importance algorithm that is based on the re-estimation of critical topological features at each step of the graph deconstruction. The Iterative Diffusion Importance has been compared with methods such as diffusion importance and degree product, which are two very well-known benchmark algorithms. As for benchmark networks, we tested the Iterative Diffusion Importance on three standard networks, such as Zachary’s Karate Club, the American Football Network, and the Dolphins Network, which are often used for algorithm efficiency evaluation and are different in size and density. Also, we proposed a new benchmark network representing the airplane communication between Japan and the US. The numerical experiment on finding the ranking of critical edges and the following network decomposition demonstrated that the proposed Iterative Diffusion Importance exceeds the conventional diffusion importance by the efficiency for 2–35% depending on the network complexity, the number of nodes, and the number of edges. The only drawback of the Iterative Diffusion Importance is an increase in computation complexity and hencely in the runtime, but this drawback can be easily compensated for by the preliminary planning of the network deconstruction or protection and by reducing the re-evaluation frequency of the iterative process.
-
Разработка алгоритма анизотропной нелинейной фильтрации данных компьютерной томографии с применением динамического порога
Компьютерные исследования и моделирование, 2019, т. 11, № 2, с. 233-248В статье рассматривается разработка алгоритма шумоподавления на основе анизотропной нелинейной фильтрации данных. Анализ отечественной и зарубежной литературы показал, что наиболее эффективные алгоритмы шумоподавления данных рентгеновской компьютерной томографии применяют комплекс нелинейных методик анализа и обработки данных, таких как билатеральная, адаптивная, трехмерная фильтрации. Однако комбинация таких методик редко применяется на практике ввиду большого времени обработки данных. В связи с этим было принято решение разработать эффективный и быстродейственный алгоритм шумоподавления на основе упрощенных билатеральных фильтров с трехмерным накоплением данных. Алгоритм был разработан на языке C++11 в программной среде Microsoft Visual Studio 2015. Основным отличием разработанного алгоритма шумоподавления является применение в нем улучшенной математической модели шума на основе распределения Пуассона и Гаусса от логарифмической величины, разработанной ранее. Это позволило точнее определить уровень шума и тем самым порог обработки данных. В результате работы алгоритма шумоподавления были получены обработанные данные компьютерной томографии с пониженным уровнем шума. При визуальной оценке работы алгоритма были отмечены повышенная информативность обработанных данных по сравнению с оригиналом, четкость отображения гомогенных областей и значительное сокращение шума в областях обработки. При оценке численных результатов обработки было выявлено снижение уровня среднеквадратичного отклонения более чем в 6 раз в областях, подвергшихся шумоподавлению, а высокие показатели коэффициента детерминации показали, что данные не подверглись искажению и изменились только из-за удаления шумов. Применение разработанного универсального динамического порога, принцип работы которого основан на пороговых критериях, позволил снизить уровень шума во всем массиве данных более чем в 6 раз. Динамический порог хорошо вписывается как в разработанный алгоритм шумоподавления на основе анизотропной нелинейной фильтрации, так и другой алгоритм шумоподавления. Алгоритм успешно функционирует в составе рабочей станции MultiVox, получил высокую оценку своей работы от специалистов-рентгенологов, а также готовится к внедрению в единую радиологическую сеть города Москвы в качестве модуля.
Ключевые слова: компьютерная томография (КТ), низкодозовая компьютерная томография (НДКТ), доза облучения, шумоподавление, анизотропия, динамическая фильтрация.
Development of anisotropic nonlinear noise-reduction algorithm for computed tomography data with context dynamic threshold
Computer Research and Modeling, 2019, v. 11, no. 2, pp. 233-248Просмотров за год: 21.The article deals with the development of the noise-reduction algorithm based on anisotropic nonlinear data filtering of computed tomography (CT). Analysis of domestic and foreign literature has shown that the most effective algorithms for noise reduction of CT data use complex methods for analyzing and processing data, such as bilateral, adaptive, three-dimensional and other types of filtrations. However, a combination of such techniques is rarely used in practice due to long processing time per slice. In this regard, it was decided to develop an efficient and fast algorithm for noise-reduction based on simplified bilateral filtration method with three-dimensional data accumulation. The algorithm was developed on C ++11 programming language in Microsoft Visual Studio 2015. The main difference of the developed noise reduction algorithm is the use an improved mathematical model of CT noise, based on the distribution of Poisson and Gauss from the logarithmic value, developed earlier by our team. This allows a more accurate determination of the noise level and, thus, the threshold of data processing. As the result of the noise reduction algorithm, processed CT data with lower noise level were obtained. Visual evaluation of the data showed the increased information content of the processed data, compared to original data, the clarity of the mapping of homogeneous regions, and a significant reduction in noise in processing areas. Assessing the numerical results of the algorithm showed a decrease in the standard deviation (SD) level by more than 6 times in the processed areas, and high rates of the determination coefficient showed that the data were not distorted and changed only due to the removal of noise. Usage of newly developed context dynamic threshold made it possible to decrease SD level on every area of data. The main difference of the developed threshold is its simplicity and speed, achieved by preliminary estimation of the data array and derivation of the threshold values that are put in correspondence with each pixel of the CT. The principle of its work is based on threshold criteria, which fits well both into the developed noise reduction algorithm based on anisotropic nonlinear filtration, and another algorithm of noise-reduction. The algorithm successfully functions as part of the MultiVox workstation and is being prepared for implementation in a single radiological network of the city of Moscow.
-
Нейросетевой анализ транспортных потоков городских агломераций на основе данных публичных камер видеообзора
Компьютерные исследования и моделирование, 2021, т. 13, № 2, с. 305-318Адекватное моделирование сложной динамики городских транспортных потоков требует сбора больших объемов данных для определения характера соответствующих моделей и их калибровки. Вместе с тем оборудование специализированных постов наблюдения является весьма затратным мероприятием и не всегда технически возможно. Совокупность этих факторов приводит к недостаточному фактографическому обеспечению как систем оперативного управления транспортными потоками, так и специалистов по транспортному планированию с очевидными последствиями для качества принимаемых решений. В качестве способа обеспечить массовый сбор данных хотя бы для качественного анализа ситуаций достаточно давно применяется обзорные видеокамеры, транслирующие изображения в определенные ситуационные центры, где соответствующие операторы осуществляют контроль и управление процессами. Достаточно много таких обзорных камер предоставляют данные своих наблюдений в общий доступ, что делает их ценным ресурсом для транспортных исследований. Вместе с тем получение количественных данных с таких камер сталкивается с существенными проблемами, относящимися к теории и практике обработки видеоизображений, чему и посвящена данная работа. В работе исследуется практическое применение некоторых мейнстримовских нейросетевых технологий для определения основных характеристик реальных транспортных потоков, наблюдаемых камерами общего доступа, классифицируются возникающие при этом проблемы и предлагаются их решения. Для отслеживания объектов дорожного движения применяются варианты сверточных нейронных сетей, исследуются способы их применения для определения базовых характеристик транспортных потоков. Простые варианты нейронной сети используются для автоматизации при получении обучающих примеров для более глубокой нейронной сети YOLOv4. Сеть YOLOv4 использована для оценки характеристик движения (скорость, плотность потока) для различных направлений с записей камер видеонаблюдения.
Ключевые слова: искусственные нейронные сети, машинное зрение, машинное обучение, сопровождение объекта, сверточные нейронные сети.
Neural network analysis of transportation flows of urban aglomeration using the data from public video cameras
Computer Research and Modeling, 2021, v. 13, no. 2, pp. 305-318Correct modeling of complex dynamics of urban transportation flows requires the collection of large volumes of empirical data to specify types of the modes and their identification. At the same time, setting a large number of observation posts is expensive and technically not always feasible. All this results in insufficient factographic support for the traffic control systems as well as for urban planners with the obvious consequences for the quality of their decisions. As one of the means to provide large-scale data collection at least for the qualitative situation analysis, the wide-area video cameras are used in different situation centers. There they are analyzed by human operators who are responsible for observation and control. Some video cameras provided their videos for common access, which makes them a valuable resource for transportation studies. However, there are significant problems with getting qualitative data from such cameras, which relate to the theory and practice of image processing. This study is devoted to the practical application of certain mainstream neuro-networking technologies for the estimation of essential characteristics of actual transportation flows. The problems arising in processing these data are analyzed, and their solutions are suggested. The convolution neural networks are used for tracking, and the methods for obtaining basic parameters of transportation flows from these observations are studied. The simplified neural networks are used for the preparation of training sets for the deep learning neural network YOLOv4 which is later used for the estimation of speed and density of automobile flows.
-
Дискретное моделирование процесса восстановительного ремонта участка дороги
Компьютерные исследования и моделирование, 2022, т. 14, № 6, с. 1255-1268Работа содержит описание результатов моделирования процесса поддержания готовности участка дорожной сети в условиях воздействия с заданными параметрами. Рассматривается одномерный участок дороги длиной до 40 км с общим количеством ударов до 100 в течение рабочей смены бригады.
Разработана имитационная модель проведения работ по его поддержанию в рабочем состоянии несколькими группами (инженерными бригадами), входящими в состав инженерно-дорожного подразделения. Для поиска точек появления заграждений используется беспилотный летательный аппарат мультикоптерного типа.
Разработаны схемы жизненных циклов основных участников тактической сцены и построена событийно управляемая модель тактической сцены. Предложен формат журнала событий, формируемого в результате имитационного моделирования процесса поддержания участка дороги.
Для визуализации процесса поддержания готовности участка дороги предложено использовать визуализацию в формате циклограммы. Разработан стиль для построения циклограммы на основе журнала событий.
В качестве алгоритма принятия решения по назначению заграждений бригадам принят простейший алгоритм, предписывающий выбирать ближайшее заграждение.
Предложен критерий, описывающий эффективность работ по поддержанию участка на основе оценки средней скорости движения транспортов по участку дороги.
Построены графики зависимости значения критерия и среднеквадратичной ошибки в зависимости от длины поддерживаемого участка и получена оценка для максимальной протяженности дорожного участка, поддерживаемого в состоянии готовности с заданными значениями для выбранного показателя качества при заданных характеристика нанесения ударов и производительности ремонтных бригад. Показана целесообразность проведения работ по поддержанию готовности несколькими бригадами, входящими в состав инженерно-дорожного подразделения, действующими автономно.
Проанализировано влияние скорости беспилотного летательного аппарата на возможности по поддержанию готовности участка. Рассмотрен диапазон скоростей от 10 до 70 км/ч, что соответствует техническим возможностям разведывательных беспилотных летательных аппаратов мультикоптерного типа.
Результаты моделирования могут быть использованы в составе комплексной имитационной модели армейской наступательной или оборонительной операции и при решении задачи оптимизации назначения задач по поддержанию готовности участков дорог инженерно-дорожными бригадами. Предложенный подход может представлять интерес при разработке игр-стратегий военной направленности.
Ключевые слова: имитационная модель, управление действиями сил и средств.
Discrete simulation of the road restoration process
Computer Research and Modeling, 2022, v. 14, no. 6, pp. 1255-1268This work contains a description of the results of modeling the process of maintaining the readiness of a section of the road network under strikes of with specified parameters. A one-dimensional section of road up to 40 km long with a total number of strikes up to 100 during the work of the brigade is considered. A simulation model has been developed for carrying out work to maintain it in working condition by several groups (engineering teams) that are part of the engineering and road division. A multicopter-type unmanned aerial vehicle is used to search for the points of appearance of obstacles. Life cycle schemes of the main participants of the tactical scene have been developed and an event-driven model of the tactical scene has been built. The format of the event log generated as a result of simulation modeling of the process of maintaining a road section is proposed. To visualize the process of maintaining the readiness of a road section, it is proposed to use visualization in the cyclogram format.
An XSL style has been developed for building a cyclogram based on an event log. As an algorithm for making a decision on the assignment of barriers to brigades, the simplest algorithm has been adopted, prescribing choosing the nearest barrier. A criterion describing the effectiveness of maintenance work on the site based on the assessment of the average speed of vehicles on the road section is proposed. Graphs of the dependence of the criterion value and the root-meansquare error depending on the length of the maintained section are plotted and an estimate is obtained for the maximum length of the road section maintained in a state of readiness with specified values for the selected quality indicator with specified characteristics of striking and performance of repair crews. The expediency of carrying out work to maintain readiness by several brigades that are part of the engineering and road division operating autonomously is shown.
The influence of the speed of the unmanned aerial vehicle on the ability to maintain the readiness of the road section is analyzed. The speed range for from 10 to 70 km/h is considered, which corresponds to the technical capabilities of multicoptertype reconnaissance unmanned aerial vehicles. The simulation results can be used as part of a complex simulation model of an army offensive or defensive operation and for solving the problem of optimizing the assignment of tasks to maintain the readiness of road sections to engineering and road brigades. The proposed approach may be of interest for the development of military-oriented strategy games.
Keywords: simulation, optimal maintenance of the road.
Журнал индексируется в Scopus
Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"





