Все выпуски
- 2025 Том 17
- 2024 Том 16
- 2023 Том 15
- 2022 Том 14
- 2021 Том 13
- 2020 Том 12
- 2019 Том 11
- 2018 Том 10
- 2017 Том 9
- 2016 Том 8
- 2015 Том 7
- 2014 Том 6
- 2013 Том 5
- 2012 Том 4
- 2011 Том 3
- 2010 Том 2
- 2009 Том 1
-
О построении и свойствах WENO-схем пятого, седьмого, девятого, одиннадцатого и тринадцатого порядков. Часть 2. Численные примеры
Компьютерные исследования и моделирование, 2016, т. 8, № 6, с. 885-910Схемы WENO (взвешенные, существенно не осциллирующие схемы) в настоящее время имеют достаточно обширную область применения для аппроксимации разрывных решений в уравнениях в частных производных. Данные схемы применялись для прямого численного моделирования и моделирования динамики больших вихрей в задачах газовой динамики, задачах МГД и даже для задач нейтронной кинетики. Данная работа посвящена уточнению некоторых характеристик схем WENO и численному моделированию характерных задач, которые позволяют сделать выводы обоб ласти применимости данных схем. Первая часть работы содержала результаты по доказательству свойств аппроксимации, устойчивости и сходимости схем WENO5, WENO7, WENO9, WENO11 и WENO13. Во второй части работы проводится модифицированный волновой анализ, позволяющий сделать вывод о дисперсионных и диссипативных свойствах схем. Далее, проводится численное моделирование ряда характерных задач для уравнений гиперболического типа: уравнений переноса (одномерное и двухмерное), уравнения Хопфа, уравнения Бюргерса (с малой диссипацией) и уравнения динамики невязкого газа (одномерное и двухмерное). Для каждой из задач, подразумевающих гладкое решение, приведено практическое вычисление порядка аппроксимации с помощью метода Рунге. Во всех задачах проверяются выводы, сделанные в первой части работы по влиянию шага по времени на нелинейные свойства схем. В частности, для уравнений переноса разрывной функции и уравнений Хопфа показано, что невыполнение указанных рекомендаций ведет вначале к росту вариации решения, а затем включается диссипативный нелинейный механизм схемы и аппроксимация падает. Практически подтверждены выводы первой части по условиям устойчивости. Для одномерного уравнения Бюргерса проведено моделирование затухания случайно распределенных начальных условий в периодической области и выполнено сопоставление со спектральным методом. Делается вывод о применимости схем WENO7–WENO13 для прямого численного моделирования турбулентности. В конце демонстрируются возможности схем на начально-краевых задачах для уравнений динамики невязкого газа: неустойчивость Рэлея–Тейлора и отражение ударной волны от клина с образованием сложной конфигурации ударных волн и разрывов.
Ключевые слова: WENO-схемы, нелинейные схемы, устойчивость численных схем, системы уравнений гиперболического типа, уравнение Хопфа.
On the construction and properties of WENO schemes order five, seven, nine, eleven and thirteen. Part 2. Numerical examples
Computer Research and Modeling, 2016, v. 8, no. 6, pp. 885-910Просмотров за год: 13.WENO schemes (weighted, essentially non oscillating) are currently having a wide range of applications as approximate high order schemes for discontinuous solutions of partial differential equations. These schemes are used for direct numerical simulation (DNS) and large eddy simmulation in the gas dynamic problems, problems for DNS in MHD and even neutron kinetics. This work is dedicated to clarify some characteristics of WENO schemes and numerical simulation of specific tasks. Results of the simulations can be used to clarify the field of application of these schemes. The first part of the work contained proofs of the approximation properties, stability and convergence of WENO5, WENO7, WENO9, WENO11 and WENO13 schemes. In the second part of the work the modified wave number analysis is conducted that allows to conclude the dispersion and dissipative properties of schemes. Further, a numerical simulation of a number of specific problems for hyperbolic equations is conducted, namely for advection equations (one-dimensional and two-dimensional), Hopf equation, Burgers equation (with low dissipation) and equations of non viscous gas dynamics (onedimensional and two-dimensional). For each problem that is implying a smooth solution, the practical calculation of the order of approximation via Runge method is performed. The influence of a time step on nonlinear properties of the schemes is analyzed experimentally in all problems and cross checked with the first part of the paper. In particular, the advection equations of a discontinuous function and Hopf equations show that the failure of the recommendations from the first part of the paper leads first to an increase in total variation of the solution and then the approximation is decreased by the non-linear dissipative mechanics of the schemes. Dissipation of randomly distributed initial conditions in a periodic domain for one-dimensional Burgers equation is conducted and a comparison with the spectral method is performed. It is concluded that the WENO7–WENO13 schemes are suitable for direct numerical simulation of turbulence. At the end we demonstrate the possibility of the schemes to be used in solution of initial-boundary value problems for equations of non viscous gas dynamics: Rayleigh–Taylor instability and the reflection of the shock wave from a wedge with the formation a complex configuration of shock waves and discontinuities.
-
Численное исследование фильтрации газоконденсатной смеси в пористой среде
Компьютерные исследования и моделирование, 2018, т. 10, № 2, с. 209-219В последние десятилетия важное значение приобретает разработка методов повышения эффективности извлечения углеводородов в месторождениях с нетрадиционными запасами, содержащими в больших количествах газовый конденсат. Это делает актуальным развитие методов математического моделирования, реалистично описывающих процессы фильтрации газоконденсатной смеси в пористой среде.
В данной работе рассматривается математическая модель, описывающая динамику изменения давления, скорости и концентрации компонент двухкомпонентной двухфазовой смеси, поступающей в лабораторную модель пласта, заполненную пористым веществом с известными физико-химическими свойствами. Математическая модель описывается системой нелинейных пространственно-одномерных дифференциальных уравнений в частных производных с соответствующими начальными и граничными условиями. Лабораторные эксперименты показывают, что в течение конечного времени система стабилизируется, что дает основание перейти к стационарной постановке задачи.
Численное решение сформулированной системы обыкновенных дифференциальных уравнений реализовано в среде Maple на основе метода Рунге–Кутты с автоматическим выбором шага. Показано, что полученные на этой основе физические параметры двухкомпонентной газоконденсатной смеси из метана и н-бутана, характеризующие моделируемую систему в режиме стабилизации, хорошо согласуются с имеющимися экспериментальными данными.
Это подтверждает реалистичность выбранного подхода и обоснованность его дальнейшего развития и применения для компьютерного моделирования неравновесных физических процессов в газоконденсатных смесях в пористой среде с целью выработки в перспективе практических рекомендаций по увеличению извлекаемости углеводородного газоконденсата из природных месторождений. В работе представлена математическая постановка системы нелинейных уравнений в частных производных и соответствующей стационарной задачи, описан метод численного исследования, обсуждаются полученные численные результаты в сравнении с экспериментальными данными.
Numerical investigation of the gas-condensate mixture flow in a porous medium
Computer Research and Modeling, 2018, v. 10, no. 2, pp. 209-219Просмотров за год: 18. Цитирований: 2 (РИНЦ).In the last decades, the development of methods for increasing the efficiency of hydrocarbon extraction in fields with unconventional reserves containing large amounts of gas condensate is of great importance. This makes important the development of methods of mathematical modeling that realistically describe physical processes in a gas-condensate mixture in a porous medium.
In the paper, a mathematical model which describes the dynamics of the pressure, velocity and concentration of the components of a two-component two-phase mixture entering a laboratory model of plast filled with a porous substance with known physicochemical properties is considered. The mathematical model is based on a system of nonlinear spatially one-dimensional partial differential equations with the corresponding initial and boundary conditions. Laboratory experiments show that during a finite time the system stabilizes, what gives a basis to proceed to the stationary formulation of the problem.
The numerical solution of the formulated system of ordinary differential equations is realized in the Maple environment on the basis of the Runge–Kutta procedure. It is shown that the physical parameters of the gascondensate mixture, which characterize the modeled system in the stabilization regime, obtained on this basis, are in good agreement with the available experimental data. This confirms the correctness of the chosen approach and the validity of its further application and development for computer modeling of physical processes in gas-condensate mixtures in a porous medium. The paper presents a mathematical formulation of the system of partial differential equations and of respective system stationary equations, describes the numerical approach, and discusses the numerical results obtained in comparison with experimental data.
-
Расчет плоских геофизических течений невязкой несжимаемой жидкости бессеточно-спектральным методом
Компьютерные исследования и моделирование, 2019, т. 11, № 3, с. 413-426Предложен бессеточно-спектральный метод расчета динамики плоских вихревых течений невязкой несжимаемой жидкости в геофизических приближениях с учетом планетарного вращения. Математически задача описывается системой двух уравнений в частных производных относительно функций тока и завихренности с различными граничными условиями (замкнутая область течения и периодические условия). В основе метода лежат следующие положения: поле завихренности задано значениями на множестве частиц; функция завихренности приближается с помощью кусочно-непрерывной аппроксимации кубическими полиномами от двух пространственных переменных; коэффициенты полиномов находятся методом наименьших квадратов; функция тока на каждом временном шаге находится методом Бубнова–Галёркина; динамика жидких частиц рассчитывается псевдосимплектическим методом Рунге–Кутты. В статье впервые подробно описан вариант метода для периодических граничных условий. Адекватность численной схемы проверена на тестовых примерах.
В численном эксперименте исследована динамика конфигурации четырех круглых вихревых пятен с одинаковымр адиусоми постоянной завихренностью, расположенных в вершинах квадрата с центром в полюсе. Изучено влияние планетарного вращения и радиуса пятен на динамику и формирование вихревых структур. Показано, что в случае достаточно большого расстояния между границами вихревых пятен их динамика близка к поведению точечных вихрей с той же интенсивностью. При росте радиуса возникает взаимодействие между вихрями, которое приводит к их слиянию. В зависимости от направления вращения сила Кориолиса может усиливать или замедлять процессы взаимодействия и перемешивания вихрей. Так, вихревая структура из четырех вихрей при небольших радиусах пятен стабилизируется в случае сонаправленности собственного и планетарного вращений и разрушается на меньших временах при противоположных направлениях. При больших радиусах вихревая структура не стабилизируется.
Numerical calculation of planar geophysical flows of an inviscid incompressible fluid by a meshfree-spectral method
Computer Research and Modeling, 2019, v. 11, no. 3, pp. 413-426Просмотров за год: 16.In this article, a meshfree-spectral method for numerical investigation of dynamics of planar geophysical flows is proposed. We investigate inviscid incompressible fluid flows with the presence of planetary rotation. Mathematically this problem is described by the non-steady system of two partial differential equations in terms of stream and vorticity functions with different boundary conditions (closed flow region and periodic conditions). The proposed method is based on several assumptions. First of all, the vorticity field is given by its values on the set of particles. The function of vorticity distribution is approximated by piecewise cubic polynomials. Coefficients of polynomials are found by least squares method. The stream function is calculated by using the spectral global Bubnov –Galerkin method at each time step.
The dynamics of fluid particles is calculated by pseudo-symplectic Runge –Kutta method. A detailed version of the method for periodic boundary conditions is described in this article for the first time. The adequacy of numerical scheme was examined on test examples. The dynamics of the configuration of four identical circular vortex patches with constant vorticity located at the vertices of a square with a center at the pole is investigated by numerical experiments. The effect of planetary rotation and the radius of patches on the dynamics and formation of vortex structures is studied. It is shown that, depending on the direction of rotation, the Coriolis force can enhance or slow down the processes of interaction and mixing of the distributed vortices. At large radii the vortex structure does not stabilize.
-
Численное моделирование естественной конвекции неньютоновской жидкости в замкнутой полости
Компьютерные исследования и моделирование, 2020, т. 12, № 1, с. 59-72В настоящей работе рассматривался нестационарный процесс естественно-конвективного теплопереноса в замкнутой квадратной полости, заполненной неньютоновской жидкостью, при наличии локального изотермического источника энергии, который располагался на нижней стенке рассматриваемой области. Вертикальные границы считались изотермически охлаждающими, горизонтальные — полностью теплоизолированными. Характер поведения неньютоновской жидкости соответствовал степенному закону Оствальда–де-Вилла. Исследуемый процесс описывался нестационарными дифференциальными уравнениями в безразмерных преобразованных переменных «функция тока – завихренность – температура». Данная методика позволяет исключить поле давления из числа неизвестных параметров, а обезразмеривание позволяет обобщить полученные результаты на множество физических постановок. Сформулированная математическая модель с соответствующими граничными условиями решалась на основе метода конечных разностей. Алгебраическое уравнение для функции тока решалось методом последовательной нижней релаксации. Дискретные аналоги уравнений дисперсии завихренности и энергии решались методом прогонки. Разработанный численный алгоритм был детально протестирован на классе модельных задач и получил хорошее согласование с другими авторами. Также в ходе исследования был проведен анализ влияния сеточных параметров на структуру течения в полости, на основе которого была выбрана оптимальная размерность сетки.
В результате численного моделирования нестационарных режимов естественной конвекции неньютоновской степенной жидкости в замкнутой квадратной полости с локальным изотермическим источником энергии был проведен анализ влияния характеризующих параметров: числа Рэлея в диапазоне 104–106, индекса степенного закона $n = 0.6–1.4$, а также положения нагревающего элемента на структуру течения и теплоперенос внутри полости. Анализ проводился на основе полученных распределений линий тока и изотерм в полости, а также на основе зависимостей среднего числа Нуссельта. В ходе работы установлено, что псевдопластические жидкости $(n < 1)$ интенсифицируют теплосъем с поверхности нагревателя. Увеличение числа Рэлея и центральное расположение нагревающего элемента также соответствуют охлаждению источника тепла.
Numerical modeling of the natural convection of a non-Newtonian fluid in a closed cavity
Computer Research and Modeling, 2020, v. 12, no. 1, pp. 59-72In this paper, a time-dependent natural convective heat transfer in a closed square cavity filled with non- Newtonian fluid was considered in the presence of an isothermal energy source located on the lower wall of the region under consideration. The vertical boundaries were kept at constant low temperature, while the horizontal walls were completely insulated. The behavior of a non-Newtonian fluid was described by the Ostwald de Ville power law. The process under study was described by transient partial differential equations using dimensionless non-primitive variables “stream function – vorticity – temperature”. This method allows excluding the pressure field from the number of unknown parameters, while the non-dimensionalization allows generalizing the obtained results to a variety of physical formulations. The considered mathematical model with the corresponding boundary conditions was solved on the basis of the finite difference method. The algebraic equation for the stream function was solved by the method of successive lower relaxation. Discrete analogs of the vorticity equation and energy equation were solved by the Thomas algorithm. The developed numerical algorithm was tested in detail on a class of model problems and good agreement with other authors was achieved. Also during the study, the mesh sensitivity analysis was performed that allows choosing the optimal mesh.
As a result of numerical simulation of unsteady natural convection of a non-Newtonian power-law fluid in a closed square cavity with a local isothermal energy source, the influence of governing parameters was analyzed including the impact of the Rayleigh number in the range 104–106, power-law index $n = 0.6–1.4$, and also the position of the heating element on the flow structure and heat transfer performance inside the cavity. The analysis was carried out on the basis of the obtained distributions of streamlines and isotherms in the cavity, as well as on the basis of the dependences of the average Nusselt number. As a result, it was established that pseudoplastic fluids $(n < 1)$ intensify heat removal from the heater surface. The increase in the Rayleigh number and the central location of the heating element also correspond to the effective cooling of the heat source.
-
Численное моделирование и параллельные вычисления процессов тепломассопереноса при физико-химических воздействиях на неоднородный нефтяной пласт, вскрытый системой скважин
Компьютерные исследования и моделирование, 2020, т. 12, № 2, с. 319-328В статье представлены математические и численные модели взаимосвязанных термо- и гидродинамических процессов эксплуатационного режима разработки единого нефтедобывающего комплекса при гидрогелевом заводнении неоднородного нефтяного пласта, вскрытого системой произвольно расположенных нагнетательных скважин и добывающих скважин, оснащенных погружными многоступенчатыми электроцентробежными насосами. Особенностью нашего подхода является моделирование работы специального наземного оборудования (станции управления погружными насосами и штуцерной камеры на устье добывающих скважин), предназначенного для регулирования режимов работы как всего комплекса в целом, так и его отдельных элементов.
Полная дифференциальная модель включает в себя уравнения, описывающие нестационарную двухфазную пятикомпонентную фильтрацию в пласте, квазистационарные процессы тепло- и массопереноса в трубах скважин и рабочих каналах погружных насосов. Специальные нелинейные граничные условия моделируют, соответственно, влияние диаметра дросселя на расход и давление на устье каждой добывающей скважины, а также частоты электрического тока на эксплуатационные характеристики погружного насосного узла. Разработка нефтяных месторождений также регулируется посредством изменения забойного давления каждой нагнетательной скважины, концентраций закачиваемых в нее гелеобразующих компонентов, их общих объемов и продолжительности закачки. Задача решается численно с использованием консервативных разностных схем, построенных на основе метода конечных разностей. Разработанные итерационные алгоритмы ориентированы на использование современных параллельных вычислительных технологий. Численная модель реализована в программном комплексе, который можно рассматривать как «интеллектуальную систему скважин» для виртуального управления разработкой нефтяных месторождений.
Ключевые слова: компьютерное моделирование, численные методы, параллельные алгоритмы, программные комплексы, многофазные потоки, добывающие и нагнетательные скважины, электроцентробежные насосы, неоднородный нефтяной пласт, гидрогелевое заводнение.
Numerical modeling and parallel computations of heat and mass transfer during physical and chemical actions on the non-uniform oil reservoir developing by system of wells
Computer Research and Modeling, 2020, v. 12, no. 2, pp. 319-328The paper provides the mathematical and numerical models of the interrelated thermo- and hydrodynamic processes in the operational mode of development the unified oil-producing complex during the hydrogel flooding of the non-uniform oil reservoir exploited with a system of arbitrarily located injecting wells and producing wells equipped with submersible multistage electrical centrifugal pumps. A special feature of our approach is the modeling of the special ground-based equipment operation (control stations of submersible pumps, drossel devices on the head of producing wells), designed to regulate the operation modes of both the whole complex and its individual elements.
The complete differential model includes equations governing non-stationary two-phase five-component filtration in the reservoir, quasi-stationary heat and mass transfer in the wells and working channels of pumps. Special non-linear boundary conditions and dependencies simulate, respectively, the influence of the drossel diameter on the flow rate and pressure at the wellhead of each producing well and the frequency electric current on the performance characteristics of the submersible pump unit. Oil field development is also regulated by the change in bottom-hole pressure of each injection well, concentration of the gel-forming components pumping into the reservoir, their total volume and duration of injection. The problem is solved numerically using conservative difference schemes constructed on the base of the finite difference method, and developed iterative algorithms oriented on the parallel computing technologies. Numerical model is implemented in a software package which can be considered as the «Intellectual System of Wells» for the virtual control the oil field development.
-
Численное моделирование течения Колмогорова в вязких средах под действием периодической в пространстве статической силы
Компьютерные исследования и моделирование, 2022, т. 14, № 4, с. 741-753Основной особенностью двумерного турбулентного течения, постоянно возбуждаемого внешней силой, является возникновение обратного каскада энергии. За счет нелинейных эффектов пространственный масштаб вихрей, создаваемых внешней силой, увеличивается до тех пор, пока рост не будет остановлен размером ячейки. В последнем случае энергия накапливается на этом масштабе. При определенных условиях такое накопление энергии приводит к возникновению системы когерентных вихрей. Наблюдаемые вихри имеют размер ячейки и в среднем изотропны. Численное моделирование является эффективным способом изучения таких процессов. Особый интерес представляет задача исследования турбулентности вязкой жидкости в квадратной ячейке при возбуждении коротковолновой и длинноволновой статическими внешними силами. Численное моделирование проводилось со слабосжимаемой жидкостью в двумерной квадратной ячейке с нулевыми граничными условиями. В работе показано, как на характеристики течения влияет пространственная частота внешней силы, а также величина вязкости самой жидкости. Увеличение пространственной частоты внешней силы приводит к стабилизации и ламинаризации течения. В то же время при увеличении пространственной частоты внешней силы уменьшение вязкости приводит к возобновлению механизма переноса энергии по обратному каскаду за счет смещения области диссипации энергии в область меньших масштабов по сравнению с масштабом накачки.
Numerical modeling of the Kolmogorov flow in a viscous media, forced by the static force periodic in space
Computer Research and Modeling, 2022, v. 14, no. 4, pp. 741-753The main feature of a two-dimensional turbulent flow, constantly excited by an external force, is the appearance of an inverse energy cascade. Due to nonlinear effects, the spatial scale of the vortices created by the external force increases until the growth is stopped by the size of the cell. In the latter case, energy is accumulated at these dimensions. Under certain conditions, accumulation leads to the appearance of a system of coherent vortices. The observed vortices are of the order of the box size and, on average, are isotropic. Numerical simulation is an effective way to study such the processes. Of particular interest is the problem of studying the viscous fluid turbulence in a square cell under excitation by short-wave and long-wave static external forces. Numerical modeling was carried out with a weakly compressible fluid in a two-dimensional square cell with zero boundary conditions. The work shows how the flow characteristics are influenced by the spatial frequency of the external force and the magnitude of the viscosity of the fluid itself. An increase in the spatial frequency of the external force leads to stabilization and laminarization of the flow. At the same time, with an increased spatial frequency of the external force, a decrease in viscosity leads to the resumption of the mechanism of energy transfer along the inverse cascade due to a shift in the energy dissipation region to a region of smaller scales compared to the pump scale.
-
Метод гибридных сеток в задачах внешней и внутренней газовой динамики
Компьютерные исследования и моделирование, 2023, т. 15, № 3, с. 543-565На основе метода моделирования задач газовой динамики с помощью системы сеток реализован алгоритм для решения нестационарной задачи с движущими телами. Алгоритм учитывает перемещение и вращение тел по заданному закону движения. Алгоритм применен для исследования обтекания бесконечной решетки, составленной из цилиндров с эллиптическим сечением, которые либо перемещаются поперек потока, либо вращаются с изменением угла атаки. Для моделирования обтекания тел с острой кромкой, характерных для профилей турбомашин, реализован алгоритм построения сетки типа С с включением некоторой области за профилем. Программа моделирования течения около профиля реализована в рамках моделей уравнений Эйлера, уравнений Навье – Стокса в приближении тонкого слоя с ламинарной вязкостью и турбулентной вязкостью в рамках алгебраической модели вязкости. Также программа была адаптирована для решения задач внутренней газодинамики турбомашин. Для этого была изменена методика задания граничных условий на входе и выходе из расчетной области со скорости на перепад давления, а также на боковых границах со свободного потока на периодичность. Это позволило моделировать течение газа в межлопаточных каналах компрессоров и турбин газотурбинных двигателей. Для отработки алгоритма были проведены серии расчетов аэродинамических параметров нескольких турбинных решеток на различных дозвуковых и сверхзвуковых режимах и их сравнение с экспериментом. Расчеты параметров турбинных решеток были проведены в рамках модели невязкого и вязкого газа. Сравнение расчета и эксперимента проводилось по распределению параметров газа около профиля, а также по потерям энергии потока в решетке. Расчеты показали применимость и корректность работы программы для решения данного класса задач. Для тестирования программы на задачах внешней дозвуковой аэродинамики были выполнены расчеты аэродинамических характеристик изолированного аэродинамического профиля в невозмущенном потоке. Полученные результаты позволяют утверждать о применимости метода гибридных сеток к различным классам задач прикладной газовой динамики.
Ключевые слова: моделирование, аэродинамические характеристики, внутренняя аэродинамика, обтекание, турбомашины, лопатки, газовые турбины, газотурбинные двигатели, ударные волны, интерференция.
Hybrid grid method for external and internal gas dynamics
Computer Research and Modeling, 2023, v. 15, no. 3, pp. 543-565Based on the modeling method using a mesh system, an algorithm is implemented for solving a unsteady problem with moving bodies The algorithm takes into account the movement and rotation of bodies according to a given law of motion. The algorithm is applied to analysis the flow around an infinite composed of cylinders with an elliptical cross-section, which either move across the flow or rotate with a change in the angle of attack. To simulate the flow of bodies with a sharp edge, characteristic of the profiles of gas turbine machines, an algorithm for constructing a mesh of type C with the inclusion of a certain area behind the profile is implemented. The program for modeling the flow near the profile is implemented within the framework of models of Euler equations, Navier – Stokes equations in the approximation of a thin layer with laminar viscosity and turbulent viscosity in the framework of an algebraic viscosity model. The program has also been adapted to solve the problems of internal gas dynamics of turbomachines. For this purpose, the method of setting the boundary conditions at the entrance and exit from the calculated area from the velocity to the pressure drop, as well as at the lateral boundaries from the free flow to the periodicity, was changed. This made it possible to simulate the flow of gas in the inter-blade channels of compressors and turbines of gas turbine engines. To refine the algorithm, a series of calculations of the aerodynamic parameters of several turbine cascades in various subsonic and supersonic modes and their comparison with the experiment were carried out. Calculations of turbine grating parameters were carried out within the framework of the inviscid and viscous gas model. The calculation and experiment were compared by the distribution of gas parameters near the profile, as well as by the energy losses of the flow in the cascade. Calculations have shown the applicability and correctness of the program to solve this class of problems. To test the program on the problems of external subsonic aerodynamics, calculations of the aerodynamic characteristics of an isolated airfoil in an undisturbed flow were performed. The results obtained allow us to assert the applicability of the hybrid grid method to various classes of problems of applied gas dynamics.
-
Численное моделирование сходящихся сферических ударных волн с нарушенной симметрией
Компьютерные исследования и моделирование, 2025, т. 17, № 1, с. 59-71На основе гидродинамического 3D-моделирования с использованием уравнения состояния газа твердых сфер Карнахана – Старлинга выполнено исследование развития периодических возмущений сходящейся сферической ударной волны, приводящих к ограничению кумуляции. Метод решения системы уравнений Эйлера на подвижных (сжимающихся) сетках позволяет с высокой точностью проследить эволюцию фронта сходящейся ударной волны в широком диапазоне изменения ее радиуса. Скорость сжатия расчетной сетки адаптируется к движению фронта ударной волны, при этом движение границ расчетной области выбирается из условия сверхзвуковой скорости ее движения относительно среды. Это приводит к тому, что решение на этапе сжатия определяется только начальными данными. Применена схема TVD второго порядка аппроксимации для реконструкции вектора консервативных переменных на границах расчетных ячеек в сочетании со схемой Русанова для расчета численного вектора потоков. Выбор обусловлен сильной тенденцией к проявлению в расчетах численной неустойчивости типа «карбункул», известной для других классов течений. Использование сжимающихся сеток позволило исследовать детальную картину течения на масштабе прекращения кумуляции, что невозможно в рамках метода геометрической динамики ударных волн Уизема (Whitham), применявшегося ранее другими авторами для расчета сходящихся ударных волн. Исследование показало, что ограничение кумуляции связанно с переходом от маховского взаимодействия сегментов сходящейся ударной волны к регулярному вследствие прогрессирующего роста отношения азимутальной скорости на фронте ударной волны к радиальной при уменьшении ее радиуса. Установлено, что это отношение представляется в виде произведения ограниченной осциллирующей функции радиуса и степенной функции радиуса с показателем степени, зависящим от начальной плотности упаковки в модели твердых сфер. Показано, что увеличение параметра плотности упаковки в модели твердых сфер приводит к значительному увеличению давлений, достигаемых в ударной волне с нарушенной симметрией. Впервые в расчете показано, что на масштабе прекращения кумуляции течение сопровождается формированием высокоэнергетичных вихрей, в которые вовлечено вещество, подвергшееся наибольшему ударно-волновому сжатию. Оказывая влияние на процессы тепло- и массопереноса в области наибольшего сжатия, это обстоятельство является важным для актуальных практических применений сходящихся ударных волн в целях инициирования реакций (детонации, фазовых переходов, управляемого термоядерного синтеза).
Ключевые слова: численное моделирование, сходящиеся ударные волны, нарушение симметрии, фокусировка ударной волны, кумуляция, газ твердых сфер.
Numerical simulation of converging spherical shock waves with symmetry violation
Computer Research and Modeling, 2025, v. 17, no. 1, pp. 59-71The study of the development of π-periodic perturbations of a converging spherical shock wave leading to cumulation limitation is performed. The study is based on 3D hydrodynamic calculations with the Carnahan – Starling equation of state for hard sphere fluid. The method of solving the Euler equations on moving (compressing) grids allows one to trace the evolution of the converging shock wave front with high accuracy in a wide range of its radius. The compression rate of the computational grid is adapted to the motion of the shock wave front, while the motion of the boundaries of the computational domain satisfy the condition of its supersonic velocity relative to the medium. This leads to the fact that the solution is determined only by the initial data at the grid compression stage. The second order TVD scheme is used to reconstruct the vector of conservative variables at the boundaries of the computational cells in combination with the Rusanov scheme for calculating the numerical vector of flows. The choice is due to a strong tendency for the manifestation of carbuncle-type numerical instability in the calculations, which is known for other classes of flows. In the three-dimensional case of the observed force, the carbuncle effect was obtained for the first time, which is explained by the specific nature of the flow: the concavity of the shock wave front in the direction of motion, the unlimited (in the symmetric case) growth of the Mach number, and the stationarity of the front on the computational grid. The applied numerical method made it possible to study the detailed flow pattern on the scale of cumulation termination, which is impossible within the framework of the Whitham method of geometric shock wave dynamics, which was previously used to calculate converging shock waves. The study showed that the limitation of cumulation is associated with the transition from the Mach interaction of converging shock wave segments to a regular one due to the progressive increase in the ratio of the azimuthal velocity at the shock wave front to the radial velocity with a decrease in its radius. It was found that this ratio is represented as a product of a limited oscillating function of the radius and a power function of the radius with an exponent depending on the initial packing density in the hard sphere model. It is shown that increasing the packing density parameter in the hard sphere model leads to a significant increase in the pressures achieved in a shock wave with broken symmetry. For the first time in the calculation, it is shown that at the scale of cumulation termination, the flow is accompanied by the formation of high-energy vortices, which involve the substance that has undergone the greatest shock-wave compression. Influencing heat and mass transfer in the region of greatest compression, this circumstance is important for current practical applications of converging shock waves for the purpose of initiating reactions (detonation, phase transitions, controlled thermonuclear fusion).
-
Численные исследования нестационарных режимов сопряженной естественной конвекции в пористой цилиндрической области (модель Дарси–Буссинеска)
Компьютерные исследования и моделирование, 2013, т. 5, № 2, с. 179-191Проведено математическое моделирование нестационарных режимов естественной конвекции в замкнутой пористой цилиндрической полости с теплопроводной оболочкой конечной толщины в условиях конвективного теплообмена с внешней средой. Краевая задача математической физики, сформулированная на основе модели Дарси–Буссинеска в безразмерных переменных «функция тока – температура», реализована численно методом конечных разностей. Детально проанализировано влияние проницаемости пористой среды 10–5≤Da<∞, отношения толщины твердой оболочки к внутреннему радиусу цилиндра 0.1≤h/L≤0.3, относительного коэффициента теплопроводности 1≤λ1,2≤20 и безразмерного времени 0≤τ≤1000 как на локальные распределения изолиний функции тока и температуры, так и на интегральные комплексы, отражающие интенсивность конвективного течения и теплопереноса.
Ключевые слова: сопряженный теплоперенос, естественная конвекция, приближение Дарси–Буссинеска, пористая цилиндрическая полость, нестационарный режим, численное моделирование.
Numerical simulation of unsteady conjugate natural convection in a cylindrical porous domain (Darcy–Boussinesq model)
Computer Research and Modeling, 2013, v. 5, no. 2, pp. 179-191Просмотров за год: 4. Цитирований: 3 (РИНЦ).Mathematical simulation on unsteady natural convection in a closed porous cylindrical cavity having finite thickness heat-conducting solid walls in conditions of convective heat exchange with an environment has been carried out. A boundary-value problem of mathematical physics formulated in dimensionless variables such as stream function and temperature on the basis of Darcy–Boussinesq model has been solved by finite difference method. Effect of a porous medium permeability 10–5≤Da<∞, ratio between a solid wall thickness and the inner radius of a cylinder 0.1≤h/L≤0.3, a thermal conductivity ratio 1≤λ1,2≤20 and a dimensionless time on both local distributions of isolines and isotherms and integral complexes reflecting an intensity of convective flow and heat transfer has been analyzed in detail.
-
Разработка математических моделей трещин для численного решения задач сейсморазведки с применением сеточно-характеристического метода
Компьютерные исследования и моделирование, 2016, т. 8, № 6, с. 911-925Данная статья посвящена описанию разработанных математических моделей трещин, которые могут быть применены для численного решения задач сейсморазведки с использованием сеточно- характеристического метода на неструктурированных треугольных (в двумерном случае) и тетраэдральных (в трехмерном случае) сетках. Такой подход позволяет корректно обсчитывать динамические процессы в условиях неоднородностей в области интегрирования. В основе разработанных моделей неоднородностей лежит концепция бесконечно-тонкой трещины — трещина задается в виде контактной границы. Такой подход заметно сокращает потребление вычислительных ресурсов за счет отсутствия необходимости задания сетки внутри трещины. В то же время он позволяет задавать трещину дискретно в области интегрирования, что дает возможность наблюдать качественно новые эффекты, которые невозможно получить с применением эффективных моделей трещиноватости, активно используемых в вычислительной сейсмике.
Основной задачей при разработке моделей было получение максимального точного результата. Разрабатывались модели, позволяющие получить отклик, близкий к отклику реально существующей трещины в геологической среде. Рассматривались газонасыщенные, флюидонасыщенные трещины, слипшиеся трещины, частично слипшиеся трещины, а также трещины с заданием сил динамического трения. Поведение трещины определялось характером задаваемого условия на контактной границе.
Пустые трещины задавались условием свободной границы. Такое условие давало возможность полного отражения от трещины волнового фронта. Флюидонасыщенность обеспечивало условие свободного скольжения на контактной границе. При таком условии наблюдалось полное прохождение продольных волн через трещину и отражение поперечных. На слипшихся трещинах использовалось условие полного слипания. Для реальных трещин, в которых расстояние между створками не равномерное и местами происходит соприкосновение (слипание) створок, была предложена модель частично слипшейся трещины. На разных точках контактной границы трещины задавались разные условия: условия скольжения (при флюидонасыщении трещины) и слипания, свободной границы (при газонасыщении трещины) и слипания. Почти такой же эффект достигается использованием модели трещины с условием динамического трения. Однако ее существенным недостатком является невозможность задания доли слипшейся поверхности трещины в силу того, что коэффициент трения может принимать значения от нуля до бесконечности. Этого недостатка лишена модель частично слипшейся трещины.
Ключевые слова: численное моделирование, сеточно-характеристический метод, неструктурированные треугольные сетки, неструктурированные тетраэдральные сетки, сейсморазведка, трещиноватые среды, математические модели трещин.
The development of fracture mathematical models for numerical solution of exploration seismology problems with use of grid-characteristic method
Computer Research and Modeling, 2016, v. 8, no. 6, pp. 911-925Просмотров за год: 9.The article contains the description of developed mathematical models of fractures which can be used for numerical solution of exploration seismology problems with use of grid-characteristic method on unstructured triangular and tetrahedral meshes. The base of developed models is the concept of infinitely thin fracture. This fracture is represented by contact boundary. Such approach significantly reduces the consumption of computer resources by the absence of the mesh definition inside of fracture necessity. By the other side it lets state the fracture discretely in integration domain, therefore one can observe qualitative new effects which are not available to observe by use of effective models of fractures, actively used in computational seismic.
The main target in the development of models have been getting the most accurate result. Developed models thet can receive the response close to the actual response of the existing fracture in geological environment. We considered fluid-filled fractures, glued and partially glued fractures, and also fractures with dynamical friction force. Fracture behavior determinated by the nature of condition on the border.
Empty fracture was represented as free boundary condition. This condition give us opportunity for total reflection of wave fronts from fracture. Fluid-filling provided the condition for sliding on the border. Under this condition, there was a passage of longitudinal and total reflection of converted waves. For the real fractures, which has unequal distance between the borders has been proposed the model of partially glued fracture. At different points of the fracture's boundary were sat different conditions. Almost the same effect is achieved by using a fracture model of dynamic friction condition. But its disadvantage is the inabillity to specify the proportion of fracture's glued area due to the friction factor can take values from zero to infinity. The model of partially glued fracture is devoid of this disadvantage.
Журнал индексируется в Scopus
Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"