Текущий выпуск Номер 1, 2025 Том 17

Все выпуски

Результаты поиска по 'benchmarking':
Найдено статей: 13
  1. Стрыгин Н.А., Кудасов Н.Д.
    Графовая сверточная нейронная сеть для быстрого и точного дизассемблирования инструкций x86
    Компьютерные исследования и моделирование, 2024, т. 16, № 7, с. 1779-1792

    Дизассемблирование двоичных файлов x86 — важная, но нетривиальная задача. Дизассемблирование трудно выполнить корректно без отладочной информации, особенно на архитектуре x86, в которой инструкции переменного размера чередуются с данными. Более того, наличие непрямых переходов в двоичном коде добавляет еще один уровень сложности. Непрямые переходы препятствуют возможности рекурсивного обхода, распространенного метода дизассемблирования, успешно идентифицировать все инструкции в коде. Следовательно, дизассемблирование такого кода становится еще более сложным и требовательным, что еще больше подчеркивает проблемы, с которыми приходится сталкиваться в этой области. Многие инструменты, включая коммерческие, такие как IDA Pro, с трудом справляются с точным дизассемблированием x86. В связи с этим был проявлен определенный интерес к разработке более совершенного решения с использованием методов машинного обучения, которое потенциально может охватывать базовые, независимые от компилятора паттерны, присущие машинному коду, сгенерированному компилятором. Методы машинного обучения могут превосходитьпо точности классические инструменты. Их разработка также может занимать меньше времени по сравнению с эвристическими методами, реализуемыми вручную, что позволяет переложитьо сновную нагрузку на сбор большого представительного набора данных исполняемых файлов с отладочной информацией. Мы усовершенствовали существующую архитектуру на основе рекуррентных графовых сверточных нейронных сетей, которая строит граф управления и потоков для дизассемблирования надмножеств инструкций. Мы расширили граф информацией о потоках данных: при кодировании входной программы, мы добавляем ребра потока управления и зависимостей от регистров, вдохновленные вероятностным дизассемблированием. Мы создали открытый набор данных для идентификации инструкций x86, основанный на комбинации набора данных ByteWeight и нескольких пакетов Debian с открытым исходным кодом. По сравнению с IDA Pro, современным коммерческим инструментом, наш подход обеспечивает более высокую точность при сохранении высокой производительности в наших тестах. Он также хорошо себя показывает по сравнению с существующими подходами машинного обучения, такими как DeepDi.

    Strygin N.A., Kudasov N.D.
    Fast and accurate x86 disassembly using a graph convolutional network model
    Computer Research and Modeling, 2024, v. 16, no. 7, pp. 1779-1792

    Disassembly of stripped x86 binaries is an important yet non-trivial task. Disassembly is difficult to perform correctly without debug information, especially on x86 architecture, which has variablesized instructions interleaved with data. Moreover, the presence of indirect jumps in binary code adds another layer of complexity. Indirect jumps impede the ability of recursive traversal, a common disassembly technique, to successfully identify all instructions within the code. Consequently, disassembling such code becomes even more intricate and demanding, further highlighting the challenges faced in this field. Many tools, including commercial ones such as IDA Pro, struggle with accurate x86 disassembly. As such, there has been some interest in developing a better solution using machine learning (ML) techniques. ML can potentially capture underlying compiler-independent patterns inherent for the compiler-generated assembly. Researchers in this area have shown that it is possible for ML approaches to outperform the classical tools. They also can be less timeconsuming to develop compared to manual heuristics, shifting most of the burden onto collecting a big representative dataset of executables with debug information. Following this line of work, we propose an improvement of an existing RGCN-based architecture, which builds control and flow graph on superset disassembly. The enhancement comes from augmenting the graph with data flow information. In particular, in the embedding we add Jump Control Flow and Register Dependency edges, inspired by Probabilistic Disassembly. We also create an open-source x86 instruction identification dataset, based on a combination of ByteWeight dataset and a selection open-source Debian packages. Compared to IDA Pro, a state of the art commercial tool, our approach yields better accuracy, while maintaining great performance on our benchmarks. It also fares well against existing machine learning approaches such as DeepDi.

  2. Рид Р., Кокс М.А., Ригли Т., Мелладо Б.
    Характеристика тестирования центрального процессора на базе процессоров ARM
    Компьютерные исследования и моделирование, 2015, т. 7, № 3, с. 581-586

    Большие научные проекты генерируют данные на всё более возрастающих скоростях. Типичные методы включают в себя хранение данных на диске, после незначительного фильтрования, а затем их обработку на больших компьютерных фермах. Производство данных достигло той точки, когда требуется обработка в режиме on-line, чтобы отфильтровать данные до управляемых размеров. Потенциальное решение включает в себя использование низко затратных процессоров ARM с маленькой мощностью в больших массивах для обеспечения массивного распараллеливания для вычислений потока данных (DSC). Главное преимущество в использовании систем на одном кристалле (SoCs) присуще самой философии этой разработки. Системы на микросхеме, прежде всего, используются в мобильных устройствах и, следовательно, потребляют меньше энергии при своей относительно хорошей производительности. Дано описание тестирования трех различных моделей процессоров ARM.

    Reed R.G., Cox M.A., Wrigley T., Mellado B.
    A CPU benchmarking characterization of ARM based processors
    Computer Research and Modeling, 2015, v. 7, no. 3, pp. 581-586

    Big science projects are producing data at ever increases rates. Typical techniques involve storing the data to disk, after minor filtering, and then processing it in large computer farms. Data production has reached a point where on-line processing is required in order to filter the data down to manageable sizes. A potential solution involves using low-cost, low-power ARM processors in large arrays to provide massive parallelisation for data stream computing (DSC). The main advantage in using System on Chips (SoCs) is inherent in its design philosophy. SoCs are primarily used in mobile devices and hence consume less power while maintaining relatively good performance. A benchmarking characterisation of three different models of ARM processors will be presented.

    Просмотров за год: 1.
  3. Ригли Т., Рид Р., Мелладо Б.
    Описание тестирования памяти однокристальных систем на основе ARM
    Компьютерные исследования и моделирование, 2015, т. 7, № 3, с. 607-613

    Мощность вычислений традиционно находится в фокусе при разработке крупномасштабных вычислительных систем, в большинстве случаев такие проекты остаются плохо оборудованными и не могут эффективно справляться с ориентированными на высокую производительность рабочими нагрузками. Кроме того, стоимость и вопросы энергопотребления для крупномасштабных вычислительных систем всё ещё остаются источником беспокойства. Потенциальное решение включает в себя использование низко затратных процессоров ARM с маленькой мощностью в больших массивах в манере, которая обеспечивает массивное распараллеливание и высокую пропускную способность, производительность (относительно существующих крупномасштабных вычислительных проектов). Предоставление большего приоритета производительности и стоимости повышает значимость производительности оперативной памяти и оптимизации проекта до высокой производительности всей системы. Используя несколько эталонных тестов производительности оперативной памяти для оценки различных аспектов производительности RAM и кэш-памяти, мы даем описание производительности четырех различных моделей однокристальной системы на основе ARM, а именно Cortex-A9, Cortex-A7, Cortex-A15 r3p2 и Cortex-A15 r3p3. Затем мы обсуждаем значимость этих результатов для вычислений большого объема и потенциала для ARM- процессоров.

    Wrigley T., Reed R.G., Mellado B.
    Memory benchmarking characterisation of ARM-based SoCs
    Computer Research and Modeling, 2015, v. 7, no. 3, pp. 607-613

    Computational intensity is traditionally the focus of large-scale computing system designs, generally leaving such designs ill-equipped to efficiently handle throughput-oriented workloads. In addition, cost and energy consumption considerations for large-scale computing systems in general remain a source of concern. A potential solution involves using low-cost, low-power ARM processors in large arrays in a manner which provides massive parallelisation and high rates of data throughput (relative to existing large-scale computing designs). Giving greater priority to both throughput-rate and cost considerations increases the relevance of primary memory performance and design optimisations to overall system performance. Using several primary memory performance benchmarks to evaluate various aspects of RAM and cache performance, we provide characterisations of the performances of four different models of ARM-based system-on-chip, namely the Cortex-A9, Cortex- A7, Cortex-A15 r3p2 and Cortex-A15 r3p3. We then discuss the relevance of these results to high volume computing and the potential for ARM processors.

Страницы: предыдущая

Журнал индексируется в Scopus

Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"

Международная Междисциплинарная Конференция МАТЕМАТИКА. КОМПЬЮТЕР. ОБРАЗОВАНИЕ.