Текущий выпуск Номер 7, 2024 Том 16

Все выпуски

Результаты поиска по 'x86':
Найдено статей: 3
  1. От редакции
    Компьютерные исследования и моделирование, 2024, т. 16, № 7, с. 1533-1538
    Editor’s note
    Computer Research and Modeling, 2024, v. 16, no. 7, pp. 1533-1538
  2. Богданов А.В., Пуае Сон K., Зайя К.
    Производительность OpenMP и реализация MPI на системе ultrasparc
    Компьютерные исследования и моделирование, 2015, т. 7, № 3, с. 485-491

    Данная работа нацелена на программистов и разработчики, заинтересованных в использовании технологии параллельного программирования для увеличения производительности приложений. Программное обеспечение Oracle Solaris Studio обеспечивает современную оптимизацию и распараллеливание компиляторов для языков C, C ++ и ФОРТРАН, продвинутый отладчик, и оптимизированные математи- ческие и быстродействующие библиотеки. Также включены чрезвычайно мощный инструмент анализа производительности для профилирования последовательных и параллельных приложений, инструмент анализа для обнаружения состязания при передаче данных и блокировки в памяти параллельных программ и IDE. Программное обеспечение Oracle Message Passing Toolkit обеспечивает высокопроизводительные MPI библиотеки и сопряжённую среду во время работы программы, необходимую для приложений передачи сообщений, которые могут работать на одной системе или по всему множеству вычислительных систем с высокопроизводительным сетевым оснащением, включая Gigabit Ethernet, 10 Gigabit Ethernet, InfiniBand и Myrinet. Примеры OpenMP и MPI представлены по всему тексту работы, включая их использование через программные продукты Oracle Solaris Studio и Oracle Message Passing Toolkit для развития и развертывания последовательных и параллельных приложений на основе систем SPARC и x86/x64. В работе продемонстрировано, как развивать и развертывать приложение, распараллеленное с OpenMP и/или MPI.

    Bogdanov A.V., P. Sone K. Ko, Zaya K.
    Performance of the OpenMP and MPI implementations on ultrasparc system
    Computer Research and Modeling, 2015, v. 7, no. 3, pp. 485-491

    This paper targets programmers and developers interested in utilizing parallel programming techniques to enhance application performance. The Oracle Solaris Studio software provides state-of-the-art optimizing and parallelizing compilers for C, C++ and Fortran, an advanced debugger, and optimized mathematical and performance libraries. Also included are an extremely powerful performance analysis tool for profiling serial and parallel applications, a thread analysis tool to detect data races and deadlock in memory parallel programs, and an Integrated Development Environment (IDE). The Oracle Message Passing Toolkit software provides the high-performance MPI libraries and associated run-time environment needed for message passing applications that can run on a single system or across multiple compute systems connected with high performance networking, including Gigabit Ethernet, 10 Gigabit Ethernet, InfiniBand and Myrinet. Examples of OpenMP and MPI are provided throughout the paper, including their usage via the Oracle Solaris Studio and Oracle Message Passing Toolkit products for development and deployment of both serial and parallel applications on SPARC and x86/x64 based systems. Throughout this paper it is demonstrated how to develop and deploy an application parallelized with OpenMP and/or MPI.

    Просмотров за год: 2.
  3. Стрыгин Н.А., Кудасов Н.Д.
    Графовая сверточная нейронная сеть для быстрого и точного дизассемблирования инструкций x86
    Компьютерные исследования и моделирование, 2024, т. 16, № 7, с. 1779-1792

    Дизассемблирование двоичных файлов x86 — важная, но нетривиальная задача. Дизассемблирование трудно выполнить корректно без отладочной информации, особенно на архитектуре x86, в которой инструкции переменного размера чередуются с данными. Более того, наличие непрямых переходов в двоичном коде добавляет еще один уровень сложности. Непрямые переходы препятствуют возможности рекурсивного обхода, распространенного метода дизассемблирования, успешно идентифицировать все инструкции в коде. Следовательно, дизассемблирование такого кода становится еще более сложным и требовательным, что еще больше подчеркивает проблемы, с которыми приходится сталкиваться в этой области. Многие инструменты, включая коммерческие, такие как IDA Pro, с трудом справляются с точным дизассемблированием x86. В связи с этим был проявлен определенный интерес к разработке более совершенного решения с использованием методов машинного обучения, которое потенциально может охватывать базовые, независимые от компилятора паттерны, присущие машинному коду, сгенерированному компилятором. Методы машинного обучения могут превосходитьпо точности классические инструменты. Их разработка также может занимать меньше времени по сравнению с эвристическими методами, реализуемыми вручную, что позволяет переложитьо сновную нагрузку на сбор большого представительного набора данных исполняемых файлов с отладочной информацией. Мы усовершенствовали существующую архитектуру на основе рекуррентных графовых сверточных нейронных сетей, которая строит граф управления и потоков для дизассемблирования надмножеств инструкций. Мы расширили граф информацией о потоках данных: при кодировании входной программы, мы добавляем ребра потока управления и зависимостей от регистров, вдохновленные вероятностным дизассемблированием. Мы создали открытый набор данных для идентификации инструкций x86, основанный на комбинации набора данных ByteWeight и нескольких пакетов Debian с открытым исходным кодом. По сравнению с IDA Pro, современным коммерческим инструментом, наш подход обеспечивает более высокую точность при сохранении высокой производительности в наших тестах. Он также хорошо себя показывает по сравнению с существующими подходами машинного обучения, такими как DeepDi.

    Strygin N.A., Kudasov N.D.
    Fast and accurate x86 disassembly using a graph convolutional network model
    Computer Research and Modeling, 2024, v. 16, no. 7, pp. 1779-1792

    Disassembly of stripped x86 binaries is an important yet non-trivial task. Disassembly is difficult to perform correctly without debug information, especially on x86 architecture, which has variablesized instructions interleaved with data. Moreover, the presence of indirect jumps in binary code adds another layer of complexity. Indirect jumps impede the ability of recursive traversal, a common disassembly technique, to successfully identify all instructions within the code. Consequently, disassembling such code becomes even more intricate and demanding, further highlighting the challenges faced in this field. Many tools, including commercial ones such as IDA Pro, struggle with accurate x86 disassembly. As such, there has been some interest in developing a better solution using machine learning (ML) techniques. ML can potentially capture underlying compiler-independent patterns inherent for the compiler-generated assembly. Researchers in this area have shown that it is possible for ML approaches to outperform the classical tools. They also can be less timeconsuming to develop compared to manual heuristics, shifting most of the burden onto collecting a big representative dataset of executables with debug information. Following this line of work, we propose an improvement of an existing RGCN-based architecture, which builds control and flow graph on superset disassembly. The enhancement comes from augmenting the graph with data flow information. In particular, in the embedding we add Jump Control Flow and Register Dependency edges, inspired by Probabilistic Disassembly. We also create an open-source x86 instruction identification dataset, based on a combination of ByteWeight dataset and a selection open-source Debian packages. Compared to IDA Pro, a state of the art commercial tool, our approach yields better accuracy, while maintaining great performance on our benchmarks. It also fares well against existing machine learning approaches such as DeepDi.

Журнал индексируется в Scopus

Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"

Международная Междисциплинарная Конференция МАТЕМАТИКА. КОМПЬЮТЕР. ОБРАЗОВАНИЕ.