Текущий выпуск Номер 1, 2025 Том 17

Все выпуски

Результаты поиска по '北京大学中文核心期刊目录2024':
Найдено статей: 108
  1. Жихарев Я.М., Черемисин Ф.Г., Клосс Ю.Ю.
    Моделирование разделения смеси газов в многоступенчатом микронасосе, основанное на решении уравнения Больцмана
    Компьютерные исследования и моделирование, 2024, т. 16, № 6, с. 1417-1432

    В работе проводятся моделирование смеси газов в многокаскадном микронасосе и оценка его эффективности при разделении компонентов смеси. Рассматривается устройство в виде протяженного канала с последовательностью поперечно расположенных пластин, различие температур сторон которых приводит к радиометрическому течению газа внутри. Скорость течения газов зависит от их масс, что приводит к разделению смеси. Моделирование основывается на численном решении кинетического уравнения Больцмана, для чего используется схема расщепления, при которой поочередно осуществляются решения уравнений переноса и задач релаксации. Вычисление интеграла столкновений осуществляется с помощью консервативного проекционного метода, при использовании которого строго выполняются законы сохранения массы, импульса и энергии, и важное асимптотическое свойство — равенство интеграла от максвелловской функции нулю. Для решения уравнения переноса используются явная разностная схема первого порядка точности и TVD-схема второго порядка. Расчеты проводятся для смеси неона и аргона в модели твердых сфер с реальным отношением молекулярных диаметров и масс. Разработана программно-моделирующая среда, которая позволяет проводить расчеты как на персональных компьютерах, так и на многопроцессорных кластерах. Использование распараллеливания приводит к ускорению вычислений относительно последовательной версии и постоянству времени одной итерации для устройств разных размеров, что позволило моделировать системы с большим числом пластин. Подобраны геометрические размеры устройства, при которых разделения смеси оказывается наибольшим. Обнаружено, что величина разделения смеси, то есть отношение концентраций на концах устройства линейно зависит от числа каскадов в устройстве, что дает возможность оценить разделение для многокаскадных систем, компьютерное моделирование которых невозможно. Построены изображения и проведен анализ течений и распределений концентраций газов внутри устройства во время его работы. Показано, что устройства такого вида при достаточно большом числе пластин подходят для разделения газовых смесей, притом что они не имеют движущихся частей и, соответственно, достаточно просты в изготовлении и мало подвержены износу.

  2. Кочергин А.В., Холматова З.Ш.
    Извлечение персонажей и событий из повествований
    Компьютерные исследования и моделирование, 2024, т. 16, № 7, с. 1593-1600

    Извлечение событий и персонажей из повествований является фундаментальной задачей при анализе и обработке текста на естественном языке. Методы извлечения событий применяются в самых разных областях — от обобщения различных документов до анализа медицинских записей. Мы определяли события на основе структуры под названием «четыре W» (кто, что, когда, где), чтобы охватить все основные компоненты событий, такие как действующие лица, действия, время и места. В этой статье мы рассмотрели два основных метода извлечения событий: статистический анализ синтаксических деревьев и семантическая маркировка ролей. Хотя эти методы были изучены разными исследователями по отдельности, мы напрямую сравнили эффективность двух подходов на собранном нами наборе данных, который мы разметили.

    Наш анализ показал, что статистический анализ синтаксических деревьев превосходит семантическую маркировку ролей при выделении событий и символов, особенно при определении конкретных деталей. Тем не менее, семантическая маркировка ролей продемонстрировала хорошую эффективность при правильной идентификации действующих лиц. Мы оценили эффективность обоих подходов, сравнив различные показатели, такие как точность, отзывчивость и F1-баллы, продемонстрировав, таким образом, их соответствующие преимущества и ограничения.

    Более того, в рамках нашей работы мы предложили различные варианты применения методов извлечения событий, которые мы планируем изучить в дальнейшем. Области, в которых мы хотим применить эти методы, включают анализ кода и установление авторства исходного кода. Мы рассматриваем возможность использования методов извлечения событий для определения ключевых элементов кода в виде назначений переменных и вызовов функций, что в дальнейшем может помочь ученым проанализировать поведение программ и определить участников проекта. Наша работа дает новое понимание эффективности статистического анализа и методов семантической маркировки ролей, предлагая исследователям новые направления для применения этих методов.

  3. Лубашевский И.А., Лубашевский В.И.
    Модель динамической ловушки для описания человеческого контроля в рамках «стимул – реакция»
    Компьютерные исследования и моделирование, 2024, т. 16, № 1, с. 79-87

    В статье предлагается новая модель динамической ловушки типа «стимул – реакция», которая имитирует человеческий контроль динамических систем, где ограниченная рациональность человеческого сознания играет существенную роль. Детально рассматривается сценарий, в котором субъект модулирует контролируемую переменную в ответ на определенный стимул. В этом контексте ограниченная рациональность человеческого сознания проявляется в неопределенности восприятия стимула и последующих действий субъекта. Модель предполагает, что когда интенсивность стимула падает ниже (размытого) порога восприятия стимула, субъект приостанавливает управление и поддерживает контролируемую переменную вблизи нуля с точностью, определяемую неопределенностью ее управления. Когда интенсивность стимула превышает неопределенность восприятия и становится доступной человеческому сознания, испытуемый активирует контроль. Тем самым, динамику системы можно представить как чередующуюся последовательность пассивного и активного режимов управления с вероятностными переходами между ними. Более того, ожидается, что эти переходы проявляют гистерезис из-за инерции принятия решений.

    В общем случае пассивный и активный режимы базируются на различных механизмах, что является проблемой для создания эффективных алгоритмов их численного моделирования. Предлагаемая модель преодолевает эту проблему за счет введения динамической ловушки типа «стимул – реакция», имеющей сложную структуру. Область динамической ловушки включает две подобласти: область стагнации динамики системы и область гистерезиса. Модель основывается на формализме стохастических дифференциальных уравнений и описывает как вероятностные переходы между пассивным и активным режимами управления, так и внутреннюю динамику этих режимов в рамках единого представления. Предложенная модель воспроизводит ожидаемые свойства этих режимов управления, вероятностные переходы между ними и гистерезис вблизи порога восприятия. Кроме того, в предельном случае модель оказывается способной имитировать человеческий контроль, когда (1) активный режим представляет собой реализацию «разомкнутого» типа для локально запланированных действий и (2) активация контроля возникает только тогда, когда интенсивность стимула существенно возрастает и риск потери контроля системы становится существенным.

  4. Бештоков М.Х.
    Численное решение интегро-дифференциальных уравнений влагопереноса дробного порядка с оператором Бесселя
    Компьютерные исследования и моделирование, 2024, т. 16, № 2, с. 353-373

    В работе рассматриваются интегро-дифференциальные уравнения влагопереноса дробного порядка с оператором Бесселя. Изучаемые уравнения содержат оператор Бесселя, два оператора дробного дифференцирования Герасимова – Капуто с разными порядками $\alpha$ и $\beta$. Рассмотрены два вида интегро-дифференциальных уравнений: в первом случае уравнение содержит нелокальный источник, т.е. интеграл от неизвестной функции по переменной интегрирования $x$, а во втором — случае интеграл по временной переменной $\tau$, обозначающий эффект памяти. Подобные задачи возникают при изучении процессов с предысторией. Для решения дифференциальных задач при различных соотношениях $\alpha$ и $\beta$ получены априорные оценки в дифференциальной форме, откуда следуют единственность и устойчивость решения по правой части и начальным данным. Для приближенного решения поставленных задач построены разностные схемы с порядком аппроксимации $O(h^2+\tau^2)$ при $\alpha=\beta$ и $O(h^2+\tau^{2-\max\{\alpha,\beta\}})$ при $\alpha\neq\beta$. Исследование единственности, устойчивости и сходимости решения проводится с помощью метода энергетических неравенств. Получены априорные оценки решений разностных задач при различных соотношениях $\alpha$ и $\beta$, откуда следуют единственность и устойчивость, а также сходимость решения разностной схемы к решению исходной дифференциальной задачи со скоростью равной порядку аппроксимации разностной схемы.

  5. Мезенцев Ю.А., Разумникова О.М., Эстрайх И.В., Тарасова И.В., Трубникова О.А.
    Задачи и алгоритмы оптимальной кластеризации многомерных объектов по множеству разнородных показателей и их приложения в медицине
    Компьютерные исследования и моделирование, 2024, т. 16, № 3, с. 673-693

    Работа посвящена описанию авторских формальных постановок задачи кластеризации при заданном числе кластеров, алгоритмам их решения, а также результатам применения этого инструментария в медицине.

    Решение сформулированных задач точными алгоритмами реализаций даже относительно невысоких размерностей до выполнения условий оптимальности невозможно за сколько-нибудь рациональное время по причине их принадлежности к классу NP.

    В связи с этим нами предложен гибридный алгоритм, сочетающий преимущества точных методов на базе кластеризации в парных расстояниях на начальном этапе с быстродействием методов решения упрощенных задач разбиения по центрам кластеров на завершающем этапе. Для развития данного направления разработан последовательный гибридный алгоритм кластеризации с использованием случайного поиска в парадигме роевого интеллекта. В статье приведено его описание и представлены результаты расчетов прикладных задач кластеризации.

    Для выяснения эффективности разработанного инструментария оптимальной кластеризации многомерных объектов по множеству разнородных показателей был выполнен ряд вычислительных экспериментов с использованием массивов данных, включающих социально-демографические, клинико-анамнестические, электроэнцефалографические и психометрические данные когнитивного статуса пациентов кардиологической клиники. Получено эксперимен- тальное доказательство эффективности применения алгоритмов локального поиска в парадигме роевого интеллекта в рамках гибридного алгоритма при решении задач оптимальной кластеризации. Результаты вычислений свидетельствуют о фактическом разрешении основной проблемы применения аппарата дискретной оптимизации — ограничения доступных размерностей реализаций задач. Нами показано, что эта проблема снимается при сохранении приемлемой близости результатов кластеризации к оптимальным.

    Прикладное значение полученных результатов кластеризации обусловлено также тем, что разработанный инструментарий оптимальной кластеризации дополнен оценкой стабильности сформированных кластеров, что позволяет к известным факторам (наличие стеноза или старший возраст) дополнительно выделить тех пациентов, когнитивные ресурсы которых оказываются недостаточны, чтобы преодолеть влияние операционной анестезии, вследствие чего отмечается однонаправленный эффект послеоперационного ухудшения показателей сложной зрительно-моторной реакции, внимания и памяти. Этот эффект свидетельствует о возможности дифференцированно классифицировать пациентов с использованием предлагаемого инструментария.

  6. Шаббир К.У., Извеков О.Я., Конюхов А.В.
    Моделирование двухфазного течения в пористых средах с использованием неоднородной сетевой модели
    Компьютерные исследования и моделирование, 2024, т. 16, № 4, с. 913-925

    Представлена неоднородная двумерная сетевая модель двухфазного течения в пористых средах. Предполагается, что ребра сети представляют собой капиллярные трубки разного радиуса. Предложен новый алгоритм управления фазовыми потоками в узлах этой сетевой модели. Показано, что сетевая модель демонстрирует свойства, аналогичные свойствам реальных пористых сред: капиллярная пропитка, зависимость капиллярного давления от насыщенности и влияние капиллярных сил при двухфазном течении. Было решено две тестовые задачи: противоточная пропитка пористого блока и двухфазное течение в периодически неоднородной пористой среде. В первой задаче реализована сеть, состоящая из двух областей: область с низкой проницаемостью и тонкими капиллярами окружена областью с высокой проницаемостью и толстыми капиллярами, изначально насыщенными смачивающими и несмачивающими несжимаемыми жидкостями соответственно. Капиллярное равновесие устанавливается за счет противоточной пропитки внутренней области. Исследована зависимость насыщенности смачивающей жидкости в областях от времени и капиллярного давления от текущей насыщенности. Получено качественное соответствие известным экспериментальным и теоретическим результатам, что в дальнейшем позволит использовать эту сетевую модель для проверки осредненных моделей капиллярной неравновесности. Во второй задаче рассматривается двухфазное вытеснение, при котором сеть изначально насыщается несмачивающей жидкостью. Затем смачивающая жидкость вводится через границу с постоянным расходом. Анализируется распределение насыщенности вдоль оси, направленной вдоль приложенного градиента давления, для различных моментов времени при различных значениях коэффициентов поверхностного натяжения. Результаты расчетов показывают, что при более низких значениях коэффициента поверхностного натяжения смачивающая жидкость предпочитает проникать через более толстые трубки, а при более высоких значениях — через более тонкие.

  7. Янковская У.И., Старостенков М.Д., Медведев Н.Н., Захаров П.В.
    Методы моделирования композитов, армированных углеродными нанотрубками: обзор и перспективы
    Компьютерные исследования и моделирование, 2024, т. 16, № 5, с. 1143-1162

    Изучение структурной характеристики композитов и наноструктур имеет фундаментальное значение в материаловедении. Теоретическое и численное моделирование и симуляция механических свойств наноструктур является основным инструментом, позволяющим проводить комплексные исследования, которые сложно проводить только экспериментально. Одним из примеров наноструктур, рассматриваемых в данной работе, являются углеродные нанотрубки (УНТ), которые обладают хорошими тепловыми и электрическими свойствами, а также низкой плотностью и высоким модулем Юнга, что делает их наиболее подходящим армирующим элементом для композитов, для потенциального применения в аэрокосмической, автомобильной, металлургической и биомедицинской промышленности. В данном обзоре мы рассмотрели методы моделирования, механические свойства и применение композитов с металлической матрицей, армированных УНТ. Также рассмотрены некоторые методы моделирования, применимые при исследованиях композитов с полимерными и металлическими матрицами. Рассмотрены такие методы, как метод градиентного спуска, метод Монте-Карло, методы молекулярной статики и молекулярной динамики. Было показано, что молекулярно-динамическое моделирование отлично подходит для создания различных систем композиционных материалов и изучения свойств композитов с металлической матрицей, армированных углеродными наноматериалами, в различных условиях. В данной работе кратко представлены наиболее часто используемые потенциалы, описывающие взаимодействие систем моделирования композитов. Правильный выбор потенциалов взаимодействия частей композитов напрямую влияет на описание изучаемого явления. Детализирована и обсуждена зависимость механических свойств композитов от объемной доли, диаметра, ориентации и количества УНТ. Показано, что объемная доля углеродных нанотрубок имеет существенное влияние на предел прочности и модуль Юнга. Диаметр УНТ оказывает большее значение на предел прочности, нежели на модуль упругости. Также приведен в пример работы, в которых изучается влияние длины УНТ на механические свойства композитов. В заключении нами предложены перспективы направления развития молекулярно-динамического моделирования в отношении композитов с металлической матрицей, армированных углеродными наноматериалами.

  8. В настоящей работе рассматривается математическая модель динамики клеточной ткани. В первой части дается вывод модели, основные положения и постановка задачи. Во второй части итоговая система исследуется численно и приводятся результаты моделирования. Постулируется, что клеточная ткань есть трехфазная среда, которая состоит из твердого скелета (представляющего собой внеклеточный матрикс), клеток и внеклеточной жидкости. Ко всему прочему учитывается наличие питательных веществ в ткани. В основу модели положены уравнения сохранения массы с учетом обмена масс, уравнения сохранения импульса для каждой фазы, а также уравнение диффузии для питательных веществ. В уравнении, описывающем клеточную фазу, также учитывается слагаемое, описывающее химическое воздействие на ткань, которое называется хемотаксисом — движением клеток, вызванным градиентом концентрации химических веществ. Исходная система уравнений сводится к системе трех уравнений для нахождения пористости, насыщенности клеток и концентрации питательных веществ. Данные уравнения дополняются начальными и краевыми условиями. В одномерном случае в начальный момент времени задается распределение пористости, концентрации клеточной фазы и питательных веществ. На левой границе задана постоянная концентрация питательных веществ, что соответствует, например, поступлению кислорода из сосуда, а также поток концентрации клеток на ней равен нулю. На правой границе рассматриваются два типа условий: первое — условие непроницаемости правой границы, второе — условие постоянной концентрации клеточной фазы и нулевой поток концентрации питательных веществ. В обоих случаях условия для матрикса и внеклеточной жидкости одинаковы, предполагается наличие источника питательных веществ (кровеносного сосуда) на левой границе области моделирования. В результате моделирования было выявлено, что хемотаксис оказывает значительное влияние на рост ткани. При отсутствии хемотаксиса зона уплотнения распространяется на всю область моделирования, но при увеличении влияния хемотаксиса на ткань образуется область деградации, в которой концентрация клеток становится ниже начальной.

  9. Кхан С.А., Шулепина С., Шулепин Д., Лукманов Р.А.
    Обзор алгоритмических решений для развертывания нейронных сетей на легких устройствах
    Компьютерные исследования и моделирование, 2024, т. 16, № 7, с. 1601-1619

    В современном мире, ориентированном на технологии, легкие устройства, такие как устройства Интернета вещей (IoT) и микроконтроллеры (MCU), становятся все более распространенными. Эти устройства более энергоэффективны и доступны по цене, но часто обладают урезанными возможностями, по сравнению со стандартными версиями, такими как ограниченная память и вычислительная мощность. Современные модели машинного обучения могут содержать миллионы параметров, что приводит к значительному росту требований по объему памяти. Эта сложность не только затрудняет развертывание больших моделей на устройствах с ограниченными ресурсами, но и увеличивает риск задержек и неэффективности при обработке данных, что критично в случаях, когда требуются ответы в реальном времени, таких как автономное вождение или медицинская диагностика.

    В последние годы нейронные сети достигли значительного прогресса в методах оптимизации моделей, что помогает в развертывании и инференсе на этих небольших устройствах. Данный обзор представляет собой подробное исследование прогресса и последних достижений в оптимизации нейронных сетей, сосредотачиваясь на ключевых областях, таких как квантизация, прореживание, дистилляция знаний и поиск архитектур нейронных сетей. Обзор рассматривает, как эти алгоритмические решения развивались и как новые подходы улучшили существующие методы, делая нейронные сети более эффективными. Статья предназначена для исследователей, практиков и инженеров в области машинного обучения, которые могут быть незнакомы с этими методами, но хотят изучить доступные техники. В работе подчеркиваются текущие исследования в области оптимизации нейронных сетей для достижения лучшей производительности, снижения потребления энергии и ускорения времени обучения, что играет важную роль в дальнейшей масштабируемости нейронных сетей. Кроме того, в обзоре определяются пробелы в текущих исследованиях и закладывается основа для будущих исследований, направленных на повышение применимости и эффективности существующих стратегий оптимизации.

  10. Подлипнова И.В., Дорн Ю.В., Склонин И.А.
    Облачная интерпретация энтропийной модели расчета матрицы корреспонденций
    Компьютерные исследования и моделирование, 2024, т. 16, № 1, с. 89-103

    С ростом населения городов сильнее ощущается необходимость планирования развития транспортной инфраструктуры. Для этой цели создаются пакеты транспортного моделирования, которые обычно содержат набор задач выпуклой оптимизации, итеративное решение которых приводит к искомому равновесному распределению потоков по путям. Одно из направлений развития транспортного моделирования — это построение более точных обобщенных моделей, которые учитывают различные типы пассажиров, их цели поездок, а также специфику личных и общественных средств передвижения, которыми могут воспользоваться агенты. Другим не менее важным направлением является улучшение эффективности производимых вычислений, так как в связи с большой размерностью современных транспортных сетей поиск численного решения задачи равновесного распределения потоков по путям является довольно затратным. Итеративность всего процесса решения лишь усугубляет это. Одним из подходов, ведущим к уменьшению числа производимых вычислений, и является построение согласованных моделей, которые позволяют объединить блоки 4-стадийной модели в единую задачу оптимизации. Это позволяет исключить итеративную прогонку блоков, перейдя от решения отдельной задачи оптимизации на каждом этапе к некоторой общей задаче. В ранних работах было доказано, что такие подходы дают эквивалентные решения. Тем не менее стоит рассмотреть обоснованность и интерпретируемость этих методов. Целью данной статьи является обоснование единой задачи, объединяющей в себе как расчет матрицы корреспонденций, так и модальный выбор, для обобщенного случая, когда в транспортной сети присутствуют различные слои спроса, типы агентов и классы транспортных средств. В статье приводятся возможные интерпретации для калибровочных параметров, применяемых в задаче, а также для двойственных множителей, ассоциированных с балансовыми ограничениями. Авторы статьи также показывают возможность объединения рассматриваемой задачи с блоком определения загрузки сети в единую задачу оптимизации.

Страницы: « первая предыдущая следующая последняя »

Журнал индексируется в Scopus

Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"

Международная Междисциплинарная Конференция МАТЕМАТИКА. КОМПЬЮТЕР. ОБРАЗОВАНИЕ.