Все выпуски
- 2025 Том 17
- 2024 Том 16
- 2023 Том 15
- 2022 Том 14
- 2021 Том 13
- 2020 Том 12
- 2019 Том 11
- 2018 Том 10
- 2017 Том 9
- 2016 Том 8
- 2015 Том 7
- 2014 Том 6
- 2013 Том 5
- 2012 Том 4
- 2011 Том 3
- 2010 Том 2
- 2009 Том 1
- Просмотров за год: 6.
- Просмотров за год: 18.
-
Научные и педагогические школы Александра Сергеевича Холодова
Компьютерные исследования и моделирование, 2018, т. 10, № 5, с. 561-579Просмотров за год: 42.В развитии науки важную роль играют научные школы — объединения исследователей, связанные общей проблемой, идеями и методами, используемыми для решения проблемы. Научные школы формируются вокруг лидера и объединяющей идеи.
За время научной деятельности академика А. С. Холодова вокруг него сформировалось несколько научных школ. В обзоре делается попытка представить основные научные направления, вокруг которых сформировались яркие коллективы с общими системами взглядов и подходами к исследованиям. В обзоре отмечается эта общая основа. Во-первых, это развитие группы численных методов для решения систем дифференциальных уравнений в частных производных гиперболического типа — сеточно-характеристические методы. Во-вторых, описание численных методов в пространствах неопределенных коэф- фициентов. Этот подход развивался как для всех типов уравнений в частных производных, так и для обыкновенных дифференциальных уравнений.
На основе предложенных А. С. Холодовым численных подходов сложились научные коллективы, работающие в разных предметных областях. Это математическое моделирование динамики плазмы, динамики деформируемого твердого тела, некоторых задач биологии, биофизики, медицинской физики и биомеханики. Сравнительно новые направления — решение задач на графах (процессы транспортировки электроэнергии, моделирование транспортных потоков на дорожной сети и т. д.).
В обзоре делается попытка отследить деятельность научных школ от момента их зарождения до настоящего времени, проследить связь работ А. С. Холодова с работами его учеников и коллег. Полный обзор деятельности всех научных школ, сформировавшихся вокруг Александра Сергеевча, невозможен ввиду огромного количества и разнообразия научных результатов.
Делается также попытка связать деятельность научных школ с появлением научно-образовательной школы в Московском физико-техническом институте.
- Просмотров за год: 20.
-
Квантильные меры формы для распределений с тяжелыми хвостами
Компьютерные исследования и моделирование, 2024, т. 16, № 5, с. 1041-1077Современная литература содержит многочисленные примеры применения распределений с тяжелыми хвостами для прикладных исследований сложных систем. Моделирование экстремальных данных обычно ограничено небольшим набором форм распределений, которые исторически применяются в данной области прикладных исследований. Расширение набора форм возможно посредством сопоставления мер форм распределений. В работе на примере бета-распределения второго рода показано, что неопределенность моментов тяжелохвостых бета-распределений ограничивает применимость классических методов моментов для исследования их форм. На данном этапе сохраняется актуальность построения методов сопоставления распределений с помощью квантильных мер формы, которые освобождены от ограничений на параметры формы. Цель работы состоит в компьютерном исследовании возможности построения пространства квантильных мер форм для проведения сравнения распределений с тяжелыми хвостами. На основе компьютерного моделирования проводится картирование реализаций распределений в пространстве параметрических, квантильных и информационных мер формы. Картирование распределений в пространстве только параметрических мер формы показало, что наложение множества распределений с тяжелыми хвостами в пространстве квантильных мер асимметрии и эксцесса не позволяет сопоставить формы распределений, принадлежащие разным типам распределений. Хорошо известно, что информационные меры содержат дополнительную информацию о мере формы распределений. В работе предложен квантильный коэффициент энтропии в качестве дополнительной независимой меры формы, построенной на отношении интервалов энтропийной и квантильной неопределенностей. На примере логнормального распределения и распределения Парето иллюстрируются возможности сравнения форм распределений с реализациями бета-распределения второго рода. В частности показано, что, несмотря на близость положений форм в трехмерном пространстве, формы реализаций логнормального распределения отсутствуют среди реализаций бета-распределения второго рода. Картирование положения устойчивых распределений в трехмерном пространстве квантильных мер форм позволило оценить параметры формы бета-распределения второго рода, для которого форма наиболее близка к форме распределения Леви. Из материала статьи следует, что отображение распределений в трехмерном пространстве квантильных мер форм значительно расширяет возможность сравнения форм для распределений с тяжелыми хвостами.
-
Общий подход к построению градиентных методов параметрической идентификации на основе модифицированной взвешенной ортогонализации Грама – Шмидта и алгоритмов дискретной фильтрации информационного типа
Компьютерные исследования и моделирование, 2025, т. 17, № 5, с. 761-782В работе рассматривается задача параметрической идентификации дискретных линейных стохастических систем, представленных уравнениями в пространстве состояний, с аддитивными и мультипликативными шумами. Предполагается, что уравнения состояния и измерения дискретной линейной стохастической системы зависят от неизвестного параметра, подлежащего идентификации.
Представлен новый подход к построению градиентных методов параметрической идентификации в классе дискретных линейных стохастических систем с аддитивными и мультиплика- тивными шумами, основанный на применении модифицированной взвешенной ортогонализации Грама – Шмидта (MWGS) и алгоритмов дискретной фильтрации информационного типа.
Основными теоретическими результатами данной работы являются: 1) новый критерий идентификации в терминах расширенного информационного LD-фильтра; 2) новый алгоритм вычисления значений производных по параметру неопределенности дискретной линейной стохастической системы в расширенном информационном LD-фильтре на основе прямой процедуры модифицированной взвешенной ортогонализации Грама – Шмидта; 3) новый метод вычисления градиента критерия идентификации на основе предложенного дифференцированного расширенного информационного LD-фильтра.
Преимуществом предложенного подхода является применение численно устойчивой к ошибкам машинного округления MWGS-ортогонализации, лежащей в основе разработанных методов и алгоритмов. Информационный LD-фильтр сохраняет симметричность и положительную определенность информационных матриц. Разработанные алгоритмы имеют блочно-матричную структуру, удобную для компьютерной реализации.
Все разработанные алгоритмы реализованы на языке MATLAB. Проведены серии численных экспериментов, результаты которых демонстрируют работоспособность предложенного подхода на примере решения задачи идентификации параметров математической модели сложной механической системы.
Полученные результаты могут быть использованы для построения методов параметрической идентификации математических моделей, представленных в пространстве состояний дискретными линейными стохастическими системами с аддитивными и мультипликативными шумами.
Журнал индексируется в Scopus
Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"





