Текущий выпуск Номер 1, 2025 Том 17

Все выпуски

Результаты поиска по '北京大学中文核心期刊目录2024':
Найдено статей: 108
  1. Изучается приближенная математическая модель кровотока в осесимметричном кровеносном сосуде. Под таким сосудом понимается бесконечно длинный круговой цилиндр, стенки которого состоят из упругих колец. Кровь рассматривается как несжимаемая жидкость, текущая в этом цилиндре. Повышенное давление вызывает радиально-симметричное растяжение упругих колец. Следуя Дж. Лэму, кольца расположены близко друг к другу так, что жидкость между ними не протекает. Для мысленной реализации этого достаточно предположить, что кольца обтянуты непроницаемой пленкой, не обладающей упругими свойствами. Упругостью обладают лишь кольца. Рассматриваемая модель кровотока в кровеносном сосуде состоит из трех уравнений: уравнения неразрывности, закона сохранения количества движения и уравнения состояния. Рассматривается приближенная процедура сведения рассматриваемых уравнений к уравнению Кортевега – де Фриза (КдФ), которая рассмотрена Дж. Лэмом не в полной мере, лишь для установления зависимости коэффициентов уравнения КдФ от физических параметров рассматриваемой модели течения несжимаемого флюида в осесимметричном сосуде. Из уравнения КдФ стандартным переходом к бегущим волнам получаются ОДУ третьего, второго и первого порядка соответственно. В зависимости от различных случаев расположения трех стационарных решений ОДУ первого порядка стандартно получаются кноидальная волна и солитон. Основное внимание уделено неограниченному периодическому решению, которое названо нами вырожденной кноидальной волной. Математически кноидальные волны описываются эллиптическими интегралами с параметрами, определяющими амплитуды и периоды. Солитон и вырожденная кноидальная волна описываются элементарными функциями. Указан гемодинамический смысл этих видов решений. Благодаря тому, что множества решений ОДУ первого, второго и третьего порядков не совпадают, установлено, что задачу Коши для ОДУ второго и третьего порядков можно задавать во всех точках, а для ОДУ первого порядка — лишь в точках роста или убывания. Задачу Коши для ОДУ первого порядка нельзя задавать в точках экстремума благодаря нарушению условия Липшица. Численно проиллюстрировано перерождение кноидальной волны в вырожденную кноидальную волну, которая может привести к разрыву стенок сосуда. Приведенная таблица описывает два режима приближения кноидальной волны к вырожденной кноидальной волне.

  2. Герасимов А.Н., Шпитонков М.И.
    Математическая модель системы «паразит – хозяин» с распределенным временем сохранения иммунитета
    Компьютерные исследования и моделирование, 2024, т. 16, № 3, с. 695-711

    Пандемия COVID-19 вызвала рост интереса к математическим моделям эпидемического процесса, так как только статистический анализ заболеваемости не позволяет проводить среднесрочное прогнозирование в условиях быстро меняющейся ситуации.

    Среди специфичных особенностей COVID-19, которые нужно учитывать в математических моделях, можно отметить гетерогенность возбудителя, неоднократные смены доминирующего варианта SARS-CoV-2 и относительную кратковременность постинфекционного иммунитета.

    В связи с этим были аналитически изучены решения системы дифференциальных уравнений для модели класса SIR с гетерогенной длительностью постинфекционного иммунитета, а также проведены численные расчеты для динамики системы при средней длительности постинфекционного иммунитета порядка года.

    Для модели класса SIR с гетерогенной длительностью постинфекционного иммунитета было доказано, что любое решение можно неограниченно продолжать по времени в положительную сторону без выхода за область определения системы.

    Для контактного числа $R_0 \leqslant 1$ все решения стремятся к единственномут ривиальному стационарному решению с нулевой долей инфицированных, а для $R_0 > 1$ кроме тривиального решения существует и нетривиальное стационарное решение с ненулевыми долями инфицированных и восприимчивых. Были доказаны существование и единственность нетривиального стационарного решения при $R_0 > 1$, а также доказано, что оно является глобальным аттрактором.

    Также для нескольких вариантов гетерогенности были вычислены собственные числа для скорости экспоненциальной сходимости малых отклонений от нетривиального стационарного решения.

    Получено, что при значениях контактного числа, соответствующих COVID-19, фазовая траектория имеет вид скручивающейся спирали с длиной периода порядка года.

    Это соответствует реальной динамике заболеваемости COVID-19, при которой после нескольких месяцев роста заболеваемости начинается период его падения. При этом второй волны заболеваемости меньшей амплитуды, что предсказывала модель, не наблюдалось, так как на протяжении 2020–2023 годов примерно каждые полгода появлялся новый вариант SARS-CoV-2, имеющий большую заразность, чем предыдущий, в результате чего новый вариант вытеснял предыдущий и становился доминирующим.

  3. Pham C.T., Phan M.N., Tran T.T.
    Image classification based on deep learning with automatic relevance determination and structured Bayesian pruning
    Компьютерные исследования и моделирование, 2024, т. 16, № 4, с. 927-938

    Deep learning’s power stems from complex architectures; however, these can lead to overfitting, where models memorize training data and fail to generalize to unseen examples. This paper proposes a novel probabilistic approach to mitigate this issue. We introduce two key elements: Truncated Log-Uniform Prior and Truncated Log-Normal Variational Approximation, and Automatic Relevance Determination (ARD) with Bayesian Deep Neural Networks (BDNNs). Within the probabilistic framework, we employ a specially designed truncated log-uniform prior for noise. This prior acts as a regularizer, guiding the learning process towards simpler solutions and reducing overfitting. Additionally, a truncated log-normal variational approximation is used for efficient handling of the complex probability distributions inherent in deep learning models. ARD automatically identifies and removes irrelevant features or weights within a model. By integrating ARD with BDNNs, where weights have a probability distribution, we achieve a variational bound similar to the popular variational dropout technique. Dropout randomly drops neurons during training, encouraging the model not to rely heavily on any single feature. Our approach with ARD achieves similar benefits without the randomness of dropout, potentially leading to more stable training.

    To evaluate our approach, we have tested the model on two datasets: the Canadian Institute For Advanced Research (CIFAR-10) for image classification and a dataset of Macroscopic Images of Wood, which is compiled from multiple macroscopic images of wood datasets. Our method is applied to established architectures like Visual Geometry Group (VGG) and Residual Network (ResNet). The results demonstrate significant improvements. The model reduced overfitting while maintaining, or even improving, the accuracy of the network’s predictions on classification tasks. This validates the effectiveness of our approach in enhancing the performance and generalization capabilities of deep learning models.

  4. Потапов И.И., Потапов Д.И.
    Модель установившегося течения реки в поперечном сечении изогнутого русла
    Компьютерные исследования и моделирование, 2024, т. 16, № 5, с. 1163-1178

    Моделирование русловых процессов при исследовании береговых деформаций русла требует вычисления параметров гидродинамического потока, учитывающих существование вторичных поперечных течений, формирующихся на закруглении русла. Трехмерное моделирование таких процессов на текущий момент возможно только для небольших модельных каналов, для реальных речных потоков необходимы модели пониженной размерности. При этом редукция задачи от трехмерной модели движения речного потока к двумерной модели потока в плоскости створа канала предполагает, что рассматриваемый гидродинамический поток является квазистационарным, и для него выполнены гипотезы об асимптотическом поведении потока по потоковой координате створа. С учетом данных ограничений в работе сформулирована математическая модель задачи о движении стационарного турбулентного спокойного речного потока в створе канала. Задача сформулирована в смешанной постановке скорости — «вихрь – функция тока». В качестве дополнительных условий для редукции задачи требуется задание граничных условий на свободной поверхности потока для поля скорости, определяемого в нормальном и касательном направлении к оси створа. Предполагается, что значения данных скоростей должны быть определены из решения вспомогательных задач или получены из данных натурных или экспериментальных измерений.

    Для решения сформулированной задачи используется метод конечных элементов в формулировке Петрова – Галёркина. Получен дискретный аналог задачи и предложен алгоритм ее решения. Выполненные численные исследования показали в целом хорошую согласованность полученных решений при их сравнении с известными экспериментальными данными.

    Полученные погрешности авторы связывают с необходимостью более точного определения циркуляционного поля скоростей в створе потока путем подбора и калибровки более подходящей модели вычисления турбулентной вязкости и граничных условий на свободной границе створа.

  5. Цхай А.А., Романов М.А., Куприянов В.А.
    Модель ассимиляционного потенциала озерной экосистемы на примере биогенных загрязнений
    Компьютерные исследования и моделирование, 2024, т. 16, № 6, с. 1447-1465

    Разработана модель биогеохимических циклов трансформации питательных веществ в экосистеме водоема на примере Телецкого озера (ТО) для оценки его ассимиляционного потенциала в условиях отсутствия прямых измерений концентраций общего азота и фосфора, вместо чего для предварительных выводов используются соответствующие расчетные данные, полученные при моделировании. Правомерность такого способа обосновывается проверкой адекватности результатов моделирования данным среднемесячных многолетних наблюдений для всех переменных состояния модели в воде изучаемого обьекта. Рассмотрены наиболее существенные особенности моделирования круговорота соединений биогенных элементов (N и P) и динамики растворенного кислорода в экосистеме ТО. Выполнена калибровка модели с учетом данных многолетних наблюдений за качеством воды 1985–2003 гг., а также сценарного варианта гидрологического режима 2016 г. Приводится анализ внутригодовой изменчивости переменных состояния, азотных и фосфорных поступлений и потерь в воде ТО. Рассчитана предварительная величина допустимой нагрузки N и P на озеро. Модельный анализ показал, что у озера практически отсутствует ассимиляционный потенциал по отношению к соединениям фосфора. Значения среднегодовых концентраций, соответствующие случаю допустимой биогенной нагрузки, равны Pобщ. = 0,013 гР/м3, что равно среднегодовой концентрации за 18-летний период наблюдений, пороговое содержание Nобщ. = 0,895 гN/м3. Ассимиляционный потенциал по азоту небольшой, в пределах второй значащей цифры после запятой, имеется в виду, что его расчетная среднегодовая величина составляет 0,836 гN/м3. Результаты модельных расчетов свидетельствуют о том, что воды ТО из-за низкой температуры воды в течение всего года наряду с уникальной чистотой отличаются крайне слабо развитым сообществом гидробионтов. В случае других озер повышение антропогенного пресса могло бы сглаживаться за счет утилизации вследствие жизнедеятельности достаточно развитых сообществ гидробионтов. Здесь же достаточного ресурса самоочищения нет, и сравнительно небольшое повышение антропогенного загрязнения может привести к нарушению устойчивости в экосистеме ТО.

  6. Конюхов И.В., Конюхов В.М., Черница А.А., Дюсенова А.
    Особенности применения физически информированных нейронных сетей для решения обыкновенных дифференциальных уравнений
    Компьютерные исследования и моделирование, 2024, т. 16, № 7, с. 1621-1636

    Рассматривается применение физически информированных нейронных сетей с использованием многослойных персептронов для решения задач Коши, в которых правые части уравнения являются непрерывными монотонно возрастающими, убывающими или осциллирующими функциями. С помощью вычислительных экспериментов изучено влияние метода построения приближенного нейросетевого решения, структуры нейронной сети, алгоритмов оптимизации и средств программной реализации на процесс обучения и точность полученного решения. Выполнен анализ эффективности работы наиболее часто используемых библиотек машинного обучения при разработке программ на языках программирования Python и C#. Показано, что применение языка C# позволяет сократить время обучения нейросетей на 20–40%. Выбор различных функций активации влияет на процесс обучения и точность приближенного решения. Наиболее эффективными в рассматриваемых задачах являются сигмоида и гиперболический тангенс. Минимум функции потерь достигается при определенном количестве нейронов скрытого слоя однослойной нейронной сети за фиксированное время обучения нейросетевой модели, причем усложнение структуры сети за счет увеличения числа нейронов не приводит к улучшению результатов обучения. При этом величина шага сетки между точками обучающей выборки, обеспечивающей минимум функции потерь, в рассмотренных задачах Коши практически одинакова. Кроме того, при обучении однослойных нейронных сетей наиболее эффективными для решения задач оптимизации являются метод Adam и его модификации. Дополнительно рассмотрено применение двух- и трех-слойных нейронных сетей. Показано, что в этих случаях целесообразно использовать алгоритм LBFGS, который по сравнению с методом Adam в ряде случаев требует на порядок меньшего времени обучения при достижении одинакового порядка точности. Исследованы также особенности обучения нейронной сети в задачах Коши, в которых решение является осциллирующей функцией с монотонно убывающей амплитудой. Для них необходимо строить нейросетевое решение не с постоянными, а с переменными весовыми коэффициентами, что обеспечивает преимущество такого подхода при обучении в тех узлах, которые расположены вблизи конечной точки интервала решения задачи.

  7. Пучинин С.М., Корольков Е.Р., Стонякин Ф.С., Алкуса М.С., Выгузов А.А.
    Cубградиентные методы с шагом типа Б. Т. Поляка для задач минимизации квазивыпуклых функций с ограничениями-неравенствами и аналогами острого минимума
    Компьютерные исследования и моделирование, 2024, т. 16, № 1, с. 105-122

    В работе рассмотрено два варианта понятия острого минимума для задач математического программирования с квазивыпуклой целевой функцией и ограничениями-неравенствами. Исследована задача описания варианта простого субградиентного метода с переключениями по продуктивным и непродуктивным шагам, для которого бы на классе задач с липшицевыми функциями можно было гарантировать сходимость со скоростью геометрической прогрессии ко множеству точных решений или его окрестности. При этом важно, чтобы для реализации метода не было необходимости знать параметр острого минимума, который обычно сложно оценить на практике. В качестве решения проблемы авторы предлагают использовать процедуру регулировки шага, аналогичную предложенной ранее Б. Т. Поляком. Однако при этом более остро по сравнению с классом задач без ограничений встает проблема знания точного значения минимума целевой функции. В работе описываются условия на погрешность этой информации, которые позволяют сохранить сходимость со скоростью геометрической прогрессии в окрестность множества точек минимума задачи. Рассмотрено два аналога понятия острого минимума для задач с ограничениями-неравенствами. В первом случае возникает проблема приближения к точному решению лишь до заранее выбранного уровня точности, при этом рассматривается случай, когда минимальное значение целевой функции неизвестно, вместо этого дано некоторое его приближение. Описаны условия на неточность минимума целевой функции, при которой все еще сохраняется сходимость к окрестности искомого множества точек со скоростью геометрической прогрессии. Второй рассматриваемый вариант острого минимума не зависит от желаемой точности задачи. Для него предложен несколько иной способ проверки продуктивности шага, позволяющий в случае точной информации гарантировать сходимость метода к точному решению со скоростью геометрической прогрессии. Доказаны оценки сходимости в условиях слабой выпуклости ограничений и некоторых ограничениях на выбор начальной точки, а также сформулирован результат-следствие для выпуклого случая, когда необходимость дополнительного предположения о выборе начальной точки пропадает. Для обоих подходов доказано убывание расстояния от текущей точки до множества решений с ростом количества итераций. Это, в частности, позволяет ограничить требования используемых свойств функций (липшицевость, острый минимум) лишь для ограниченного множества. Выполнены вычислительные эксперименты, в том числе для задачи проектирования механических конструкций.

  8. Маликов З.М., Назаров Ф.Х., Мадалиев М.Э.
    Численное исследование турбулентного потока Тейлора – Куэтта
    Компьютерные исследования и моделирование, 2024, т. 16, № 2, с. 395-408

    В настоящей работе исследован турбулентный поток Тейлора – Куэтта с помощью двухмерного моделирования на базе осредненных уравнений Навье – Стокса (RANS) и нового двухжидкостного подхода к турбулентности при числах Рейнольдса в диапазоне от 1000 до 8000. Исследуется течение, обусловленное вращающимся внутренним и неподвижным внешним цилиндрами. Рассмотрен случай соотношения диаметров цилиндров 1:2. Известно, что возникающее круговое течение характеризуется анизотропной турбулентностью и математическое моделирование таких потоков является сложной задачей. Для описания таких потоков используются либо методы прямого моделирования, которые требуют больших вычислительных затрат, либо достаточно трудоемкие методы рейнольдсовых напряжений или же линейные RANS-модели со специальными поправками на вращение, которые способны описывать анизотропную турбулентность. В работе для сравнения различных подходов к моделированию турбулентности представлены численные результаты линейных RANS-моделей SARC, SST-RC, метода рейнольдсовых напряжений SSG/LRR-RSM-w2012, прямого моделирования турбулентности DNS, а также новой двухжидкостной модели. Показано, что недавно разработанная двухжидкостная модель адекватно описывает рассматриваемый поток. Помимо этого, двухжидкостная модель проста для численной реализации и имеет хорошую сходимость.

  9. Suganya G., Jenitta E., Senthamarai R.
    A study on the dynamics of pest population with biocontrol using predator, parasite in presence of awareness
    Компьютерные исследования и моделирование, 2024, т. 16, № 3, с. 713-729

    The coconut tree is often mentioned as the “tree of life” due to its immense benefits to the human community ranging from edible products to building materials. Rugose spiraling whitefly (RSW), a natural enemy seems to be a major threat to farmers in bringing up these coconut trees. A mathematical model to study the dynamics of pest population in the presence of predator and parasite is developed. The biologically feasible equilibrium points are derived. Local asymptotic stability as well as global asymptotic stability is analyzed at the points. Furthermore, in order to educate farmers on pest control, we have added the impact of awareness programs in the model. The conditions of existence and stability properties of all feasible steady states of this model are analyzed. The result reveals that predator and parasite play a major role in reducing the immature pest. It also shows that pest control activities through awareness programs further reduce the mature pest population which decreases the egg laying rate which in turn reduces the immature population.

  10. Любушин А.А., Родионов Е.А.
    Анализ прогностических свойств тремора земной поверхности с помощью разложения Хуанга
    Компьютерные исследования и моделирование, 2024, т. 16, № 4, с. 939-958

    Предлагается метод анализа тремора земной поверхности, измеряемого средствами космической геодезии с целью выделения прогностических эффектов активизации сейсмичности. Метод иллюстрируется на примере совместного анализа совокупности синхронных временных рядов ежесуточных вертикальных смещений земной поверхности на Японских островах для интервала времени 2009–2023 гг. Анализ основан на разбиении исходных данных (1047 временных рядов) на блоки (кластеры станций) и последовательном применении метода главных компонент. Разбиение сети станций на кластеры производится методом k-средних из критерия максимума псевдо-статистики. Для Японии оптимальное число кластеров было выбрано равным 15. К временным рядам главных компонент от блоков станций применяется метод разложения Хуанга на последовательность независимых эмпирических мод колебаний (Empirical Mode Decomposition, EMD). Для обеспечения устойчивости оценок волновых форм EMD-разложения производилось усреднение 1000 независимых аддитивных реализаций белого шума ограниченной амплитуды. С помощью разложения Холецкого ковариационной матрицы волновых форм первых трех EMD-компонент в скользящем временном окне определены индикаторы аномального поведения тремора. Путем вычисления корреляционной функции между средними индикаторами аномального поведения и выде- лившейся сейсмической энергии в окрестности Японских островов установлено, что всплески меры ано- мального поведения тремора предшествуют выбросам сейсмической энергии. Целью статьи является про- яснение распространенных гипотез о том, что движения земной коры, регистрируемые средствами космической геодезии, могут содержать прогностическую информацию. То, что смещения, регистрируемые геодезическими методами, реагируют на последствия землетрясений, широко известно и многократно демонстрировалось. Но выделение геодезических эффектов, предвещающих сейсмические события, является значительно более сложной задачей. В нашей статье мы предлагаем один из методов обнаружения прогностических эффектов в данных космической геодезии.

Страницы: « первая предыдущая следующая последняя »

Журнал индексируется в Scopus

Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"

Международная Междисциплинарная Конференция МАТЕМАТИКА. КОМПЬЮТЕР. ОБРАЗОВАНИЕ.