Все выпуски
- 2025 Том 17
- 2024 Том 16
- 2023 Том 15
- 2022 Том 14
- 2021 Том 13
- 2020 Том 12
- 2019 Том 11
- 2018 Том 10
- 2017 Том 9
- 2016 Том 8
- 2015 Том 7
- 2014 Том 6
- 2013 Том 5
- 2012 Том 4
- 2011 Том 3
- 2010 Том 2
- 2009 Том 1
-
Исследование моделей турбулентности для расчета сильно закрученного потока в резко расширяющемся канале
Компьютерные исследования и моделирование, 2021, т. 13, № 4, с. 793-805В настоящей работе проводится сравнение принципиально различных моделей турбулентности для расчета сильно закрученного потока в резко расширяющейся трубе. Данная задача имеет большое значе- ние не только в практике, но и в теоретическом плане, потому что в таком течении возникает очень сложная анизотропная турбулентность с зонами рециркуляции и изучение протекающих процессов позволяет найти ответ на многие вопросы по турбулентности. Рассматриваемое течение хорошо изучено экспериментально. Поэтому она является очень сложной и интересной тестовой задачей для моделей турбулентности. В работе сравниваются численные результаты однопараметрической модели νt-92, метода рейнольдсовых напряжений SSG/LRR-RSM-w2012 и новой двухжидкостной модели. Эти модели очень сильно отличаются между собой, потому что в однопараметрической модели νt-92 используется гипотеза Буссинеска, в модели SSG/LRR-RSM-w2012 для каждого напряжения записывается свое уравнение, а для новой двухжидкостной модели основой является совершенно иной подход к турбулентности. Особенностью подхода к турбулентности для новой двухжидкостной модели заключается в том, что он позволяет получить замкнутую систему уравнений. Сравнение этих моделей проводится не только по соответствию их результатов экспериментальным данным, но и по вычислительным ресурсам, расходуе- мым на численные реализации этих моделей. Поэтому в работе для всех моделей использована одинаковая методика для численного расчета турбулентного закрученного потока при числе Рейнольдса $Re = 3 \cdot 10^4$ и параметре закрутки $S_w=0.6$. В работе показано, что новая двухжидкостная модель является эффективной для исследования турбулентных течений, так как имеет хорошую точность в описании сложных анизотропных турбулентных потоков и достаточно проста для численной реализации.
-
О допустимой интенсивности лазерного излучения в оптической системе и о технологии измерения коэффициента поглощения его мощности
Компьютерные исследования и моделирование, 2021, т. 13, № 5, с. 1025-1044Лазерное повреждение прозрачных твердых тел является основным фактором, ограничивающим выходную мощность лазерных систем. Для лазерных дальномеров наиболее вероятной причиной разрушения элементов оптической системы (линз, зеркал), реально, как правило, несколько запыленных, является не оптический пробой в результате лавинной ионизации, а такое тепловое воздействие на пылинку, осевшую на элементе оптической системы (ЭОС), которое приводит к ее возгоранию. Именно возгорание пылинки инициирует процесс повреждения ЭОС.
Рассматриваемая модель этого процесса учитывает нелинейный закон теплового излучения Стефана – Больцмана и бесконечное тепловое воздействие периодического излучения на ЭОСи пылинку. Эта модель описывается нелинейной системой дифференциальных уравнений для двух функций: температуры ЭОСи температуры пылинки. Доказывается, что в силу накапливающего воздействия периодического теплового воздействия процесс достиже- ния температуры возгорания пылинки происходит практически при любых априори возможных изменениях в этом процессе теплофизических параметров ЭОСи пылинки, а также коэффициентов теплообмена между ними и окружающим их воздухом. Усреднение этих параметров по переменным, относящимся как к объему, так и к поверхностям пылинки и ЭОС, корректно при указанных в работе естественных ограничениях. А благодаря рассмотрению задачи (включая численные результаты) в безразмерных единицах измерения, охвачен весь реально значимый спектр теплофизических параметров.
Проведенное тщательное математическое исследование соответствующей нелинейной системы дифференциальных уравнений впервые позволило для общего случая теплофизических параметров и характеристик теплового воздействия периодического лазерного излучения найти формулу для значения той допустимой интенсивности излучения, которая не приводит к разрушению ЭОСв результате возгорания пылинки, осевшей на ЭОС. Найденное в работе для общего случая теоретическое значение допустимой интенсивности в частном случае данных лазерного комплекса обсерватории в г. Грассе (на юге Франции) практически соответствует полученному там экспериментальному значению.
Наряду с решением основной задачи получена в качестве побочного результата формула для коэффициента поглощения мощности лазерного излучения элементом оптической системы, выраженная в терминах четырех безразмерных параметров: относительной интенсивности лазерного излучения, относительной освещенности ЭОС, относительного коэффициента теплоотдачи от ЭОСк окружающему его воздуху и относительной установившейся температуры ЭОС.
-
Создание компьютерной модели для проведения верифицированного вычислительного эксперимента по восстановлению электрофизических параметров материалов произвольных форм и диэлектрических свойств
Компьютерные исследования и моделирование, 2023, т. 15, № 6, с. 1555-1571Создание компьютерного лабораторного стенда, позволяющего получать достоверные характеристики, которые могут быть приняты за действительные, с учетом погрешностей и шумов (в чем заключается главная отличительная черта вычислительного эксперимента от модельных исследований), является одной из основных проблем настоящей работы. В ней рассматривается следующая задача: имеется прямоугольный волновод в одномодовом режиме, на широкой стенке которого прорезано сквозное технологическое отверстие, через которое в полость линии передачи помещается образец для исследования. Алгоритм восстановления следующий: в лаборатории производится измерение параметров цепи (S11 и/или S21) в линии передачи с образцом. В компьютерной модели лабораторного стенда воссоздается геометрия образца и запускается итерационный процесс оптимизации (или свипирования) электрофи- зических параметров образца, маской которого являются экспериментальные данные, а критерием остановки — интерпретационная оценка близости к ним. Важно отметить, что разрабатываемая компьютерная модель, одновременно с кажущейся простотой, изначально является плохо обусловленной. Для постановки вычислительного эксперимента используется среда моделирования Comsol. Результаты проведенного вычислительного эксперимента с хорошей степенью точности совпали с результатами лабораторных исследований. Таким образом, экспериментальная верификация проведена для целого ряда значимых компонент, как компьютерной модели в частности, так и алгоритма восстановления параметров объекта в общем. Важно отметить, что разработанная и описанная в настоящей работе компьютерная модель может быть эффективно использована для вычислительного эксперимента по восстановлению полных диэлектрических параметров образца сложной геометрии. Обнаруженными могут также являться эффекты слабой бианизотропии, включая киральность, гиротропность и невзаимность материала. Полученная модель по определению является неполной, однако ее полнота является наивысшей из рассматриваемых вариантов, одновременно с этим результирующая модель оказывается хорошо обусловлена. Особое внимание в данной работе уделено моделированию коаксиально-волноводного перехода, показано, что применение дискретно-элементного подхода предпочтительнее, чем непосредственное моделирование геометрии СВЧ-узла.
-
Актуальные проблемы компьютерного моделирования тромбоза, фибринолиза и тромболизиса
Компьютерные исследования и моделирование, 2024, т. 16, № 4, с. 975-995Система гемостаза представляет собой одну из ключевых защитных систем организма, которая присутствует практически во всех его жидких тканях, но наиболее важна в крови. Она активируется при различных повреждениях стенки сосуда, и взаимодействие ее специализированных клеток и гуморальных систем приводит сначала к формированию гемостатического сгустка, останавливающего потерю крови, а затем к постепенному растворению этого сгустка. Образование гемостатического тромба — уникальный с точки зрения физиологии процесс, так как за время порядка минуты система гемостаза образует сложные структуры, имеющие пространственный масштаб от микрометров (в случае повреждения микрососудов или стыков между отдельными эндотелиальными клетками) до сантиметра (в случае повреждения крупных магистральных артерий). Гемостатический ответ зависит от множества скоординированных и параллельно идущих процессов, включающих адгезию тромбоцитов, их активацию, агрегацию, секрецию различных гранул, изменение формы, состава внешней части липидного бислоя, контракцию тромба и образование фибриновой сети в результате работы каскада свертывания крови. Компьютерное моделирование представляет собой мощный инструмент для исследования этой сложной системы и решения практических задач в этой области на разных уровнях организации: от внутриклеточной сигнализации в тромбоцитах, моделирования гуморальных систем свертывания крови и фибринолиза и до разработки многомасштабных моделей тромбообразования. Проблемы, связанные с компьютерным моделированием биологических процессов, можно разделить на две основные категории: отсутствие адекватного физико-математического описания имеющихся в литературе экспериментальных данных из-за сложности биологических систем (проблема отсутствия адекватной теоретической модели биологических процессов) и проблема высокой вычислительной сложности некоторых моделей, которая не позволяет применять их для исследования физиологически интересных сценариев. Здесь мы рассмотрим как некоторые принципиальные проблемы в области моделирования свертывания крови, которые до сих пор остаются нерешенными, так и прогресс в экспериментальных исследованиях гемостаза и тромбоза, ведущий к пересмотру многих ранее принятых представлений, что необходимо отразить в новых компьютерных моделях этих процессов. Особое внимание будет уделено нюансам артериального, венозного и микрососудистого тромбоза, а также проблемам фибринолиза и тромболизиса. В обзоре также кратко обсуждаются основные типы используемых математических моделей, их сложность с точки зрения вычислений, а также принципиальные вопросы, связанные с возможностью описания процессов тромбообразования в артериях.
Ключевые слова: гемостаз, тромбоз, компьютерное моделирование, фибринолиз, тромболизис, тромбоциты, тромбин, каскадсв ертывания. -
Математическое моделирование действия лазерного излучения ближнего ИК-спектра на раковые клетки
Компьютерные исследования и моделирование, 2025, т. 17, № 6, с. 1205-1218В последние десятилетия внедрение достижений биофотоники и квантовой электроники в медицинскую практику привело к развитию новых методов диагностики и терапии многих заболеваний. В области онкологии сегодня успешно применяется метод фотодинамической терапии (ФДТ) для лечения различных типов рака. Наряду с дальнейшим совершенствованием ФДТ в настоящее время ведутся исследования по разработке прямой лазерной терапии, при которой генерация молекул синглетного кислорода ($^{1}$О$_2^{}$) в раковых клетках происходит при действии лазерного излучения ближнего ИК-спектра (ЛИ БИК) с длиной волны $\lambda=1267$ нм без необходимости введения фотосенсибилизаторов в организм пациентов. С целью теоретического исследования прямого действия ЛИ БИК-спектра на раковые клетки и описания большого набора экспериментальных данных разработана математическая модель, включающая основные клеточные процессы, активируемые в раковых клетках при действии ЛИ и определяющие эффективность его цитотоксического действия на раковые клетки. В результате моделирования получена оценка скорости генерации $^{1}$О$_2^{}$ при ЛИ с $\lambda =1267$ нм и описана кинетика генерации вторичных молекул активных форм кислорода (АФК), деградация которых определяется действием учтенной в модели антиоксидантной системы защиты клетки. Показано, что при действии лазерного излучения индуцируются процессы перекисного окисления липидов, приводящие к повреждению клеточных мембран и гибели клеток путем ферроптоза. В результате моделирования установлено, что каскад свободнорадикальных и ферментативных реакций трансформации и накопления АФК приводит к пролонгированному ответу раковых клеток шейки матки на действие лазерного излучения с $\lambda=1267$ нм, в течение которого в раковых клетках развивается окислительный стресс, вызывающий их гибель в результате апоптоза и ферроптоза.
Ключевые слова: биофотоника, лазерная терапия, онкология, компьютерное моделирование, синглетный кислород, активные формы кислорода. -
Моделирование динамики кальция в органических горизонтах почвы
Компьютерные исследования и моделирование, 2010, т. 2, № 1, с. 103-110Просмотров за год: 1.В данной работе представлены результаты моделирования круговорота кальция в лесных экосистемах. Кальций является одним из основных элементов минерального питания растений, регулирующим разные метаболические процессы. Его недостаток вызывает нарушения роста тканей растений. Увеличение дефицита кальция в лесных экосистемах появляется вследствие усиления кислотной нагрузки или отчуждения биомассы при вырубках. Модель представляет собой описание круговорота на основе потока вещества между пулами, включая подробное описание почвенной части круговорота – трансформация и минерализация подстилки и др. Для калибровки модели использовались экспериментальные данные по еловым лесам Болгарии.
-
Пространственно-временная динамика и принцип конкурентного исключения в сообществе
Компьютерные исследования и моделирование, 2017, т. 9, № 5, с. 815-824Проблема видового разнообразия является предметом постоянного внимания со стороны биологов и экологов. Она исследуется и в моделях сообществ. Принцип конкурентного исключения имеет прямое отношение к этой проблеме. Он означает невозможность сосуществования в сообществе видов, когда их количество превосходит число влияющих взаимно независимых факторов. Известный советский микробиолог Г. Ф. Гаузе высказал и экспериментально обосновал схожий принцип о том, что каждый вид имеет свою собственную экологическую нишу и никакие два разных вида не могут занять одну и ту же экологическую нишу. Если под влияющими факторами понимать плотностнозависимые контролирующие рост факторы и экологическую нишу описывать с помощью этих факторов, то принцип Гаузе и принцип конкурентного исключения, по сути, идентичны. К настоящему времени известны многие примеры нарушения этого принципа в природных системах. Одним из таких примеров является сообщество видов планктона, сосуществующих на ограниченном пространстве с небольшим числом влияющих факторов. В современной экологии данный парадокс известен как парадокс планктона или парадокс Хатчинсона. Объяснения этому варьируют от неточного выявления набора факторов до различных видов пространственной и временной неоднородностей. Для двухвидового сообщества с одним фактором влияния с нелинейными функциями роста и смертности доказана возможность устойчивого сосуществования видов. В этой работе рассматриваются ситуации нелинейности и пространственной неоднородности в двухвидовом сообществе с одним фактором влияния. Показано, что при нелинейных зависимостях от плотности популяции устойчивое стационарное сосуществование видов возможно в широком диапазоне изменения параметров. Пространственная неоднородность способствует нарушению принципа конкурентного исключения и в случаях неустойчивости стационарного состояния по Тьюрингу. В соответствии с общей теорией возникают квазистационарные устойчивые структуры сосуществования двух видов при одном влияющем факторе. В работе показано, что неустойчивость по Тьюрингу возможна, если хотя бы один из видов оказывает положительное влияние на фактор. Нелинейность модели по фазовым переменным и ее пространственная распределенность порождают нарушения принципа конкурентного исключения (и принципа Гаузе) как в виде устойчивых пространственно-однородных состояний, так и в виде квазиустойчивых пространственно-неоднородных структур при неустойчивом стационарном состоянии сообщества.
Ключевые слова: сообщество, видовая структура, математическая модель, фактор, неустойчивость по Тьюрингу.Просмотров за год: 11. -
Моделирование процесса истощения газоконденсатного пласта
Компьютерные исследования и моделирование, 2020, т. 12, № 5, с. 1081-1095Одна из трудностей разработки газоконденсатных месторождений обусловлена тем, что часть углеводородов газоносного слоя присутствует в немв виде конденсата, который застревает в порах пласта и извлечению не подлежит. В этой связи активно ведутся исследования, направленные на повышение извлекаемости углеводородов в подобных месторождениях. В том числе значительное количество публикаций посвящено развитию методов математического моделирования прохождения многокомпонентных газоконденсатных смесей через пористую среду в различных условиях.
В настоящей работе в рамках классического подхода, основанного на законе Дарси и законе неразрывности потоков, сформулирована математическая постановка начально-граничной задачи для системы нелинейных дифференциальных уравнений, описывающая прохождение многокомпонентной газоконденсатной смеси через пористую среду в режиме истощения. Разработанная обобщенная вычислительная схема на основе конечно-разностной аппроксимации и метода Рунге – Кутты четвертого порядка может использоваться для расчетов как в пространственно одномерном случае, соответствующемусловиям лабораторного эксперимента, так и в двумерном случае, когда речь идет о моделировании плоского газоносного пласта с круговой симметрией.
Численное решение упомянутой системы уравнений реализовано на основе комбинированного использования C++ и Maple с применением технологии параллельного программирования MPI для ускорения вычислений. Расчеты выполнены на кластере HybriLIT Многофункционального информационно-вычислительного комплекса Лаборатории информационных технологий Объединенного института ядерных исследований.
Численные результаты сопоставлены с данными о динамике выхода девятикомпонентной углеводородной смеси в зависимости от давления, полученными на лабораторной установке (ВНИИГАЗ, Ухта). Расчеты проводились для двух типов пористого наполнителя в лабораторной модели пласта: терригенного (при 25 ◦С) и карбонатного (при 60 ◦С). Показано, что используемый подход обеспечивает согласие полученных численных результатов с экспериментальными данными. Путем подгонки к экспериментальным данным по истощению лабораторной модели пласта получены значения параметров, определяющих коэффициент межфазного перехода для моделируемой системы. С использованием тех же параметров было проведено компьютерное моделирование истощения тонкого газоносного слоя в приближении круговой симметрии.
Ключевые слова: компьютерное моделирование, многокомпонентная система углеводородов. -
Анализ идентифицируемости математической модели пиролиза пропана
Компьютерные исследования и моделирование, 2021, т. 13, № 5, с. 1045-1057Работа посвящена численному моделированию и исследованию кинетической модели пиролиза пропана. Изучение кинетики реакций является необходимой стадией моделирования динамики газового потока в реакторе.
Кинетическая модель представляет собой нелинейную систему обыкновенных дифференциальных уравнений первого порядка с параметрами, роль которых играют константы скоростей стадий. Математическое моделирование процесса основано на использовании закона сохранения масс. Для решения исходной (прямой) задачи используется неявный метод решения жестких систем обыкновенных дифференциальных уравнений. Модель содержит 60 входных кинетических параметров и 17 выходных параметров, соответствующих веществам реакции, из которых наблюдаемыми являются только 9. В процессе решения задачи по оценке параметров (обратная задача) возникает вопрос неединственности набора параметров, удовлетворяющего имеющимся экспериментальным данным. Поэтому перед решением обратной задачи проводится оценка возможности определения параметров модели — анализ идентифицируемости.
Для анализа идентифицируемости мы используем ортогональный метод, который хорошо себя зарекомендовал для анализа моделей с большим числом параметров. Основу алгоритма составляет анализ матрицы чувствительно- сти методами дифференциальной и линейной алгебры, показывающей степень зависимости неизвестных параметров моделей от заданных измерений. Анализ чувствительности и идентифицируемости показал, что параметры модели устойчиво определяются по заданному набору экспериментальных данных. В статье представлен список параметров модели от наиболее идентифицируемого до наименее идентифицируемого. Учитывая анализ идентифицируемости математической модели, были введены более жесткие ограничения на поиск слабоидентифицируемых параметров при решении обратной задачи.
Обратная задача по оценке параметров была решена с использованием генетического алгоритма. В статье представлены найденные оптимальные значения кинетических параметров. Представлено сравнение экспериментальных и расчетных зависимостей концентраций пропана, основных и побочных продуктов реакции от температуры для разных расходов смеси. На основании соответствия полученных результатов физико-химическим законам и экспериментальным данным сделан вывод об адекватности построенной математической модели.
-
Оценка влияния простейшего типа многочастичных взаимодействий на примере решеточной модели адсорбционного слоя
Компьютерные исследования и моделирование, 2024, т. 16, № 2, с. 445-458Самоорганизация молекул на твердой поверхности является одним из перспективных направлений по созданию материалов с уникальными магнитными, электрическими и оптическими свойствами. Они могут широко применяться в таких областях, как электроника, оптоэлектроника, катализ и биология. Однако на структуру и физико-химические свойства адсорбирующихся молекул оказывает влияние множество параметров, которые необходимо учитывать при изучении процесса самоорганизации молекул. В связи с этим экспериментальное исследование свойств новых материалов данного типа оказывается дорогостоящим, а также довольно часто его проведение затруднительно по различным причинам. В таких ситуациях целесообразнее воспользоваться методами математического моделирования. В рассматриваемых адсорбционных системах одним из параметров является многочастичное взаимодействие, которое часто не учитывается в моделировании из-за усложнения расчетов. В данной работе мы провели оценку влияния многочастичных взаимодействий на общую энергию системы с помощью метода трансфер-матрицы и программного комплекса Materials Studio. За основу была взята модель моноцентровой адсорбции молекул на треугольной решетке с учетом ближайших взаимодействий. Для этой модели были построены фазовые диаграммы в основном состоянии и проведены расчеты ряда термодинамических характеристик (степени покрытия $\theta$, энтропии $S$, восприимчивости $\xi $) при ненулевых температурах. Было обнаружено образование всех четырех упорядоченных структур (решеточный газ с $\theta=0$, $(\sqrt{3} \times \sqrt{3}) R30^{\circ}$ с $\theta = \frac{1}{3}$, $(\sqrt{3} \times \sqrt{3})R^{*}30^{\circ}$ с $\theta = \frac{2}{3}$, плотнейшая фаза с $\theta = 1$) в системе, учитывающей исключительно двухчастичные взаимодействия, и отсутствие фазы $(\sqrt{3}\times \sqrt{3}) R30^\circ$ при учете только трехчастичных взаимодействий. На основе квантово-механических расчетов на примере атомистической модели адсорбционного слоя тримезиновой кислоты мы определили, что в такой системе вклад многочастичного характера взаимодействий составляет 11,44% от энергии двухчастичных взаимодействий. При таких значениях в решеточной модели возникают только количественные отличия, проявляющиеся в смещении области перехода из структуры $(\sqrt{3} \times \sqrt{3}) R^{*}30^\circ$ в плотнейшую фазу вправо на 38,25% при $\frac{\varepsilon}{RT} = 4$ и влево на 23,46% при $\frac{\varepsilon}{RT} = −2$.
Журнал индексируется в Scopus
Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"





