Текущий выпуск Номер 6, 2025 Том 17

Все выпуски

Результаты поиска по 'экспериментальные исследования':
Найдено статей: 122
  1. Скрипаленко М.Н., Скрипаленко М.М., Чан Ба Хюи , Ашихмин Д.А., Самусев С.В., Сидоров А.А.
    Определение с помощью вычислительной среды DEFORM-3D влияния вибраций рабочего валка на формирование толщины полосы при холодной прокатке
    Компьютерные исследования и моделирование, 2017, т. 9, № 1, с. 111-116

    Современные тенденции развития технического диагностирования связаны с применением вычислительных сред для компьютерного моделирования, позволяющих во многом заменить реальные эксперименты, снизить затраты на исследование и минимизировать риски. Компьютерное моделирование позволяет еще на этапе проектирования оборудования провести диагностирование с целью определения допустимых отклонений параметров работы технической установки. Особенностью диагностирования прокатного оборудования является то, что работа технологического агрегата непосредственно связана с формированием заданного качества получаемой металлопродукции, в том числе по точности. При этом важная роль отводится разработке методик технической диагностики и диагностического моделирования процессов прокатки и оборудования. Проведено компьютерное диагностическое моделирование процесса продольной холодной прокатки полосы с вибрацией рабочего валка в горизонтальной плоскости по известным данным экспериментальных исследований на непрерывном стане 1700. Вибрация рабочего валка в прокатной клети возникала вследствие зазора между подушкой валка и направляющей в станине и приводила к формированию периодической составляющей в отклонениях толщины полосы. По результатам моделирования с помощью вычислительной среды DEFORM-3D получили прокатанную полосу, которая имела продольную и поперечную разнотолщинность. Визуализация данных геометрических параметров полосы, полученных при моделировании, соответствовала виду неоднородностей поверхности реально прокатанной полосы. Дальнейший анализ разнотолщинности проводили с целью определения возможности идентификации по результатам моделирования источников периодических составляющих толщины полосы, причиной которых являются отклонения в работе оборудования, обусловленные его неисправностями или неправильной настройкой. Преимущество компьютерного моделирования при поиске источников образования разнотолщинности состоит в том, что можно проверить различные предположения по формированию толщины проката, не проводя реальных экспериментов и сократив таким образом временны́ е и материальные затраты, связанные с подготовкой и проведением экспериментов. Кроме того, при компьютерном моделировании толщина задаваемой полосы не будет иметь отклонений, что позволит рассматривать влияние на формирование толщины изучаемого источника без помех, связанных с наследственной разнотолщинностью, как это наблюдается в промышленных или лабораторных экспериментах. На основе спектрального анализа случайных процессов установлено, что в реализации толщины прокатанной полосы, полученной компьютерным моделированием процесса прокатки в одной клети при вибрации рабочего валка, содержится периодическая составляющая, имеющая частоту, равную заданной частоте колебаний рабочего валка. Результаты компьютерного моделирования согласуются с данными исследований на стане 1700. Таким образом, показана возможность применения компьютерного моделирования при поиске причин формирования разнотолщинности на промышленном прокатном оборудовании.

    Просмотров за год: 12. Цитирований: 1 (РИНЦ).
  2. Усанов М.С., Кульберг Н.С., Яковлева Т.В., Морозов С.П.
    Определение дозы излучения компьютерной томографии по анализу уровня шума
    Компьютерные исследования и моделирование, 2018, т. 10, № 4, с. 525-533

    В статье рассматривается процесс создания эффективного алгоритма для определения количества излученных квантов с рентгеновской трубки в исследованиях компьютерной томографии. Анализ отечественной и зарубежной литературы показал, что большинство работ в области радиометрии и радиографии принимают во внимание табличные значения показателей поглощения рентгеновского излучения, а индивидуальные показатели дозы не учитывают вовсе, т. к. во многих исследованиях отсутствует радиометрический отчет (Dose Report) и для облегчения расчетов статистики применяется средний показатель. В связи с этим было принято решение разработать средства выявления данных об ионизирующей нагрузке путем анализа шума компьютерной томографии (КТ). В качестве основы алгоритма принята математическая модель распределения шума собственной разработки на основе распределения Пуассона и Гаусса от логарифмической величины. Результирующая математическая модель проверялась на данных КТ калибровочного фантома, состоящего из трех пластиковых цилиндров, заполненных водой, коэффициент поглощения рентгеновского излучения которых известен из табличных значений. Данные были получены с нескольких КТ приборов различных производителей (Siemens, Toshiba, GE, Phillips). Разработанный алгоритм позволил рассчитать количество излученных квантов рентгеновского излучения за единицу времени. Эти данные, с учетом уровня шума и радиусов цилиндров, были преобразованы в величины поглощения рентгеновского излучения, после чего проводилось сравнение с табличными значениями. В результате работы алгоритма с данными КТ различных конфигураций были получены экспериментальные данные, согласующиеся с теоретической частью и математической моделью. Результаты показали хорошую точность алгоритма и математического аппарата, что может говорить о достоверности полученных данных. Данная математическая модель уже применяется в программе шумоподавления КТ собственной разработки, где она участвует в качестве средства создания динамического порога шумоподавления. В данный момент алгоритм проходит процедуру доработки для работы с реальными данными компьютерной томографии пациентов.

    Просмотров за год: 23. Цитирований: 1 (РИНЦ).
  3. Красняков И.В., Брацун Д.А., Письмен Л.М.
    Математическое моделирование роста карциномы при динамическом изменении фенотипа клеток
    Компьютерные исследования и моделирование, 2018, т. 10, № 6, с. 879-902

    В работе предлагается двумерная хемомеханическая модель роста инвазивной карциномы в ткани эпителия. Каждая клетка ткани представляет собой эластичный многоугольник, изменяющий свою форму и размеры под действием сил давления со стороны ткани. Средние размер и форма клеток были откалиброваны на основе экспериментальных данных. Модель позволяет описывать динамические деформации в ткани эпителия как коллективную эволюцию клеток, взаимодействующих посредством обмена механическими и химическими сигналами. Общее направление роста опухоли задается линейным градиентом концентрации питательного элемента. Рост и деформация ткани осуществляются за счет механизмов деления и интеркаляции клеток. В модели предполагается, что карцинома представляет собой гетерогенное образование, составленное из клеток с разным фенотипом, которые выполняют в опухоли различные функции. Основным параметром, определяющим фенотип клетки, является степень ее адгезии к примыкающей ткани. Выделено три основных фенотипа раковых клеток: эпителиальный (Э) фенотип представлен внутренними клетками опухоли, мезенхимальный (М) фенотип представлен одиночными клетками, промежуточный фенотип представлен фронтальными клетками опухоли. При этом в модели предполагается, что фенотип каждой клетки при определенных условиях может динамически меняться за счет эпителиально-мезенхимального (ЭМ) и обратного к нему (МЭ) переходов. Для здоровых клеток выделен основной Э-фенотип, который представлен обычными клетками с сильной адгезией друг к другу. Предполагается, что здоровые клетки, которые примыкают к опухоли, под воздействием последней испытывают вынужденный ЭМ-переход и образуют М-фенотип здоровых клеток. Численное моделирование показало, что в зависимости от значений управляющих параметров, а также комбинации возможных фенотипов здоровых и раковых клеток эволюция опухоли может приводить к разнообразным структурам, отражающим самоорганизацию клеток опухоли. Проводится сравнение структур, полученных в численном эксперименте, с морфологическими структурами, ранее выявленными в клинических исследованиях карциномы молочной железы: трабекулярной, солидной, тубулярной и альвеолярной структурами, а также дискретными клетками с амебоидным поведением. Обсуждается возможный сценарий морфогенеза и типа инвазивного поведения для каждой структуры. Описан процесс метастазирования, при котором одиночная раковая клетка амебоидного фенотипа, перемещающаяся за счет интеркаляций в ткани здорового эпителия, делится и испытывает МЭ-переход с появлением вторичной опухоли.

    Просмотров за год: 46.
  4. Маликов З.М., Назаров Ф.Х.
    Исследование моделей турбулентности для расчета сильно закрученного потока в резко расширяющемся канале
    Компьютерные исследования и моделирование, 2021, т. 13, № 4, с. 793-805

    В настоящей работе проводится сравнение принципиально различных моделей турбулентности для расчета сильно закрученного потока в резко расширяющейся трубе. Данная задача имеет большое значе- ние не только в практике, но и в теоретическом плане, потому что в таком течении возникает очень сложная анизотропная турбулентность с зонами рециркуляции и изучение протекающих процессов позволяет найти ответ на многие вопросы по турбулентности. Рассматриваемое течение хорошо изучено экспериментально. Поэтому она является очень сложной и интересной тестовой задачей для моделей турбулентности. В работе сравниваются численные результаты однопараметрической модели νt-92, метода рейнольдсовых напряжений SSG/LRR-RSM-w2012 и новой двухжидкостной модели. Эти модели очень сильно отличаются между собой, потому что в однопараметрической модели νt-92 используется гипотеза Буссинеска, в модели SSG/LRR-RSM-w2012 для каждого напряжения записывается свое уравнение, а для новой двухжидкостной модели основой является совершенно иной подход к турбулентности. Особенностью подхода к турбулентности для новой двухжидкостной модели заключается в том, что он позволяет получить замкнутую систему уравнений. Сравнение этих моделей проводится не только по соответствию их результатов экспериментальным данным, но и по вычислительным ресурсам, расходуе- мым на численные реализации этих моделей. Поэтому в работе для всех моделей использована одинаковая методика для численного расчета турбулентного закрученного потока при числе Рейнольдса $Re = 3 \cdot 10^4$ и параметре закрутки $S_w=0.6$. В работе показано, что новая двухжидкостная модель является эффективной для исследования турбулентных течений, так как имеет хорошую точность в описании сложных анизотропных турбулентных потоков и достаточно проста для численной реализации.

  5. Демидов А.С., Демидова И.В.
    О допустимой интенсивности лазерного излучения в оптической системе и о технологии измерения коэффициента поглощения его мощности
    Компьютерные исследования и моделирование, 2021, т. 13, № 5, с. 1025-1044

    Лазерное повреждение прозрачных твердых тел является основным фактором, ограничивающим выходную мощность лазерных систем. Для лазерных дальномеров наиболее вероятной причиной разрушения элементов оптической системы (линз, зеркал), реально, как правило, несколько запыленных, является не оптический пробой в результате лавинной ионизации, а такое тепловое воздействие на пылинку, осевшую на элементе оптической системы (ЭОС), которое приводит к ее возгоранию. Именно возгорание пылинки инициирует процесс повреждения ЭОС.

    Рассматриваемая модель этого процесса учитывает нелинейный закон теплового излучения Стефана – Больцмана и бесконечное тепловое воздействие периодического излучения на ЭОСи пылинку. Эта модель описывается нелинейной системой дифференциальных уравнений для двух функций: температуры ЭОСи температуры пылинки. Доказывается, что в силу накапливающего воздействия периодического теплового воздействия процесс достиже- ния температуры возгорания пылинки происходит практически при любых априори возможных изменениях в этом процессе теплофизических параметров ЭОСи пылинки, а также коэффициентов теплообмена между ними и окружающим их воздухом. Усреднение этих параметров по переменным, относящимся как к объему, так и к поверхностям пылинки и ЭОС, корректно при указанных в работе естественных ограничениях. А благодаря рассмотрению задачи (включая численные результаты) в безразмерных единицах измерения, охвачен весь реально значимый спектр теплофизических параметров.

    Проведенное тщательное математическое исследование соответствующей нелинейной системы дифференциальных уравнений впервые позволило для общего случая теплофизических параметров и характеристик теплового воздействия периодического лазерного излучения найти формулу для значения той допустимой интенсивности излучения, которая не приводит к разрушению ЭОСв результате возгорания пылинки, осевшей на ЭОС. Найденное в работе для общего случая теоретическое значение допустимой интенсивности в частном случае данных лазерного комплекса обсерватории в г. Грассе (на юге Франции) практически соответствует полученному там экспериментальному значению.

    Наряду с решением основной задачи получена в качестве побочного результата формула для коэффициента поглощения мощности лазерного излучения элементом оптической системы, выраженная в терминах четырех безразмерных параметров: относительной интенсивности лазерного излучения, относительной освещенности ЭОС, относительного коэффициента теплоотдачи от ЭОСк окружающему его воздуху и относительной установившейся температуры ЭОС.

  6. Создание компьютерного лабораторного стенда, позволяющего получать достоверные характеристики, которые могут быть приняты за действительные, с учетом погрешностей и шумов (в чем заключается главная отличительная черта вычислительного эксперимента от модельных исследований), является одной из основных проблем настоящей работы. В ней рассматривается следующая задача: имеется прямоугольный волновод в одномодовом режиме, на широкой стенке которого прорезано сквозное технологическое отверстие, через которое в полость линии передачи помещается образец для исследования. Алгоритм восстановления следующий: в лаборатории производится измерение параметров цепи (S11 и/или S21) в линии передачи с образцом. В компьютерной модели лабораторного стенда воссоздается геометрия образца и запускается итерационный процесс оптимизации (или свипирования) электрофи- зических параметров образца, маской которого являются экспериментальные данные, а критерием остановки — интерпретационная оценка близости к ним. Важно отметить, что разрабатываемая компьютерная модель, одновременно с кажущейся простотой, изначально является плохо обусловленной. Для постановки вычислительного эксперимента используется среда моделирования Comsol. Результаты проведенного вычислительного эксперимента с хорошей степенью точности совпали с результатами лабораторных исследований. Таким образом, экспериментальная верификация проведена для целого ряда значимых компонент, как компьютерной модели в частности, так и алгоритма восстановления параметров объекта в общем. Важно отметить, что разработанная и описанная в настоящей работе компьютерная модель может быть эффективно использована для вычислительного эксперимента по восстановлению полных диэлектрических параметров образца сложной геометрии. Обнаруженными могут также являться эффекты слабой бианизотропии, включая киральность, гиротропность и невзаимность материала. Полученная модель по определению является неполной, однако ее полнота является наивысшей из рассматриваемых вариантов, одновременно с этим результирующая модель оказывается хорошо обусловлена. Особое внимание в данной работе уделено моделированию коаксиально-волноводного перехода, показано, что применение дискретно-элементного подхода предпочтительнее, чем непосредственное моделирование геометрии СВЧ-узла.

  7. Пантелеев М.А., Бершадский Е.С., Шибеко А.М., Нечипуренко Д.Ю.
    Актуальные проблемы компьютерного моделирования тромбоза, фибринолиза и тромболизиса
    Компьютерные исследования и моделирование, 2024, т. 16, № 4, с. 975-995

    Система гемостаза представляет собой одну из ключевых защитных систем организма, которая присутствует практически во всех его жидких тканях, но наиболее важна в крови. Она активируется при различных повреждениях стенки сосуда, и взаимодействие ее специализированных клеток и гуморальных систем приводит сначала к формированию гемостатического сгустка, останавливающего потерю крови, а затем к постепенному растворению этого сгустка. Образование гемостатического тромба — уникальный с точки зрения физиологии процесс, так как за время порядка минуты система гемостаза образует сложные структуры, имеющие пространственный масштаб от микрометров (в случае повреждения микрососудов или стыков между отдельными эндотелиальными клетками) до сантиметра (в случае повреждения крупных магистральных артерий). Гемостатический ответ зависит от множества скоординированных и параллельно идущих процессов, включающих адгезию тромбоцитов, их активацию, агрегацию, секрецию различных гранул, изменение формы, состава внешней части липидного бислоя, контракцию тромба и образование фибриновой сети в результате работы каскада свертывания крови. Компьютерное моделирование представляет собой мощный инструмент для исследования этой сложной системы и решения практических задач в этой области на разных уровнях организации: от внутриклеточной сигнализации в тромбоцитах, моделирования гуморальных систем свертывания крови и фибринолиза и до разработки многомасштабных моделей тромбообразования. Проблемы, связанные с компьютерным моделированием биологических процессов, можно разделить на две основные категории: отсутствие адекватного физико-математического описания имеющихся в литературе экспериментальных данных из-за сложности биологических систем (проблема отсутствия адекватной теоретической модели биологических процессов) и проблема высокой вычислительной сложности некоторых моделей, которая не позволяет применять их для исследования физиологически интересных сценариев. Здесь мы рассмотрим как некоторые принципиальные проблемы в области моделирования свертывания крови, которые до сих пор остаются нерешенными, так и прогресс в экспериментальных исследованиях гемостаза и тромбоза, ведущий к пересмотру многих ранее принятых представлений, что необходимо отразить в новых компьютерных моделях этих процессов. Особое внимание будет уделено нюансам артериального, венозного и микрососудистого тромбоза, а также проблемам фибринолиза и тромболизиса. В обзоре также кратко обсуждаются основные типы используемых математических моделей, их сложность с точки зрения вычислений, а также принципиальные вопросы, связанные с возможностью описания процессов тромбообразования в артериях.

  8. Тикунова К.В., Голышев Г.Г., Соколовский С.Г., Рафаилов Э.У., Гольцов А.Н.
    Математическое моделирование действия лазерного излучения ближнего ИК-спектра на раковые клетки
    Компьютерные исследования и моделирование, 2025, т. 17, № 6, с. 1205-1218

    В последние десятилетия внедрение достижений биофотоники и квантовой электроники в медицинскую практику привело к развитию новых методов диагностики и терапии многих заболеваний. В области онкологии сегодня успешно применяется метод фотодинамической терапии (ФДТ) для лечения различных типов рака. Наряду с дальнейшим совершенствованием ФДТ в настоящее время ведутся исследования по разработке прямой лазерной терапии, при которой генерация молекул синглетного кислорода ($^{1}$О$_2^{}$) в раковых клетках происходит при действии лазерного излучения ближнего ИК-спектра (ЛИ БИК) с длиной волны $\lambda=1267$ нм без необходимости введения фотосенсибилизаторов в организм пациентов. С целью теоретического исследования прямого действия ЛИ БИК-спектра на раковые клетки и описания большого набора экспериментальных данных разработана математическая модель, включающая основные клеточные процессы, активируемые в раковых клетках при действии ЛИ и определяющие эффективность его цитотоксического действия на раковые клетки. В результате моделирования получена оценка скорости генерации $^{1}$О$_2^{}$ при ЛИ с $\lambda =1267$ нм и описана кинетика генерации вторичных молекул активных форм кислорода (АФК), деградация которых определяется действием учтенной в модели антиоксидантной системы защиты клетки. Показано, что при действии лазерного излучения индуцируются процессы перекисного окисления липидов, приводящие к повреждению клеточных мембран и гибели клеток путем ферроптоза. В результате моделирования установлено, что каскад свободнорадикальных и ферментативных реакций трансформации и накопления АФК приводит к пролонгированному ответу раковых клеток шейки матки на действие лазерного излучения с $\lambda=1267$ нм, в течение которого в раковых клетках развивается окислительный стресс, вызывающий их гибель в результате апоптоза и ферроптоза.

  9. Платонов Д.В., Минаков А.В., Дектерев А.А., Сентябов А.В.
    Численное моделирование пространственных течений с закруткой потока
    Компьютерные исследования и моделирование, 2013, т. 5, № 4, с. 635-648

    Данная работа посвящена исследованию закрученных течений. Течения с закруткой потока находят широкое применение в различных технологических процессах. Закрученные течения могут сопровождаться такими нестационарными эффектами, как прецессия вихревого ядра. В свою очередь крупномасштабные пульсации, вызванные прецессией вихря, могут привести к повреждению конструкций и снижению надежности оборудования. Таким образом, для инженерных расчетов требуются подходы, достаточно хорошо описывающие подобные течения. В данной работе представлена методика описания закрученных потоков апробированная в рамках программных комплексов Fluent и SigmaFlow. Проведено численное моделирование нескольких тестовых задач с закруткой потока. Полученные результаты сопоставлены между собой, а также с экспериментальными данными.

    Просмотров за год: 4. Цитирований: 2 (РИНЦ).
  10. Волохова А.В., Земляная Е.В., Качалов В.В., Рихвицкий В.С.
    Моделирование процесса истощения газоконденсатного пласта
    Компьютерные исследования и моделирование, 2020, т. 12, № 5, с. 1081-1095

    Одна из трудностей разработки газоконденсатных месторождений обусловлена тем, что часть углеводородов газоносного слоя присутствует в немв виде конденсата, который застревает в порах пласта и извлечению не подлежит. В этой связи активно ведутся исследования, направленные на повышение извлекаемости углеводородов в подобных месторождениях. В том числе значительное количество публикаций посвящено развитию методов математического моделирования прохождения многокомпонентных газоконденсатных смесей через пористую среду в различных условиях.

    В настоящей работе в рамках классического подхода, основанного на законе Дарси и законе неразрывности потоков, сформулирована математическая постановка начально-граничной задачи для системы нелинейных дифференциальных уравнений, описывающая прохождение многокомпонентной газоконденсатной смеси через пористую среду в режиме истощения. Разработанная обобщенная вычислительная схема на основе конечно-разностной аппроксимации и метода Рунге – Кутты четвертого порядка может использоваться для расчетов как в пространственно одномерном случае, соответствующемусловиям лабораторного эксперимента, так и в двумерном случае, когда речь идет о моделировании плоского газоносного пласта с круговой симметрией.

    Численное решение упомянутой системы уравнений реализовано на основе комбинированного использования C++ и Maple с применением технологии параллельного программирования MPI для ускорения вычислений. Расчеты выполнены на кластере HybriLIT Многофункционального информационно-вычислительного комплекса Лаборатории информационных технологий Объединенного института ядерных исследований.

    Численные результаты сопоставлены с данными о динамике выхода девятикомпонентной углеводородной смеси в зависимости от давления, полученными на лабораторной установке (ВНИИГАЗ, Ухта). Расчеты проводились для двух типов пористого наполнителя в лабораторной модели пласта: терригенного (при 25 С) и карбонатного (при 60 С). Показано, что используемый подход обеспечивает согласие полученных численных результатов с экспериментальными данными. Путем подгонки к экспериментальным данным по истощению лабораторной модели пласта получены значения параметров, определяющих коэффициент межфазного перехода для моделируемой системы. С использованием тех же параметров было проведено компьютерное моделирование истощения тонкого газоносного слоя в приближении круговой симметрии.

Страницы: « первая предыдущая следующая последняя »

Журнал индексируется в Scopus

Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"

Международная Междисциплинарная Конференция МАТЕМАТИКА. КОМПЬЮТЕР. ОБРАЗОВАНИЕ.