Все выпуски
- 2025 Том 17
- 2024 Том 16
- 2023 Том 15
- 2022 Том 14
- 2021 Том 13
- 2020 Том 12
- 2019 Том 11
- 2018 Том 10
- 2017 Том 9
- 2016 Том 8
- 2015 Том 7
- 2014 Том 6
- 2013 Том 5
- 2012 Том 4
- 2011 Том 3
- 2010 Том 2
- 2009 Том 1
-
Биоматематическая система методов описания нуклеиновых кислот
Компьютерные исследования и моделирование, 2020, т. 12, № 2, с. 417-434Статья посвящена применению методов математического анализа, поиска паттернов и изучения состава нуклеотидов в последовательностях ДНК на геномном уровне. Изложены новые методы математической биологии, которые позволили обнаружить и отобразить скрытую упорядоченность генетических нуклеотидных последовательностей, находящихся в клетках живых организмов. Исследования основаны на работах по алгебраической биологии доктора физико-математических наук С. В. Петухова, которым впервые были введены и обоснованы новые алгебры и гиперкомплексные числовые системы, описывающие генетические явления. В данной работе описана новая фаза развития матричных методов в генетике для исследования свойств нуклеотидных последовательностей (и их физико-химических параметров), построенная на принципах конечной геометрии. Целью исследования является демонстрация возможностей новых алгоритмов и обсуждение обнаруженных свойств генетических молекул ДНК и РНК. Исследование включает три этапа: параметризация, масштабирование и визуализация. Параметризация — определение учитываемых параметров, которые основаны на структурных и физико-химических свойствах нуклеотидов как элементарных составных частей генома. Масштабирование играет роль «фокусировки» и позволяет исследовать генетические структуры в различных масштабах. Визуализация включает выбор осей координатной системы и способа визуального отображения. Представленные в работе алгоритмы выдвигаются на роль расширенного инструментария для развития научно-исследовательского программного обеспечения анализа длинных нуклеотидных последовательностей с возможностью отображения геномов в параметрических пространствах различной размерности. Одним из значимых результатов исследования является то, что были получены новые биологически интерпретируемые критерии классификации геномов различных живых организмов для выявления межвидовых взаимосвязей. Новая концепция позволяет визуально и численно оценить вариативность физико-химических параметров нуклеотидных последовательностей. Эта концепция также позволяет обосновать связь параметров молекул ДНК и РНК с фрактальными геометрическими мозаиками, обнаруживает упорядоченность и симметрии полинуклеотидов и их помехоустойчивость. Полученные результаты стали обоснованием для введения новых научных терминов: «генометрия» как методология вычислительных стратегий и «генометрика» как конкретные параметры того или иного генома или нуклеотидной последовательности. В связи с результатами исследования затронуты вопросы биосемиотики и уровни иерархичности организации живой материи.
-
Применение упрощенного неявного метода Эйлера для решения задач электрофизиологии
Компьютерные исследования и моделирование, 2020, т. 12, № 4, с. 845-864Рассматривается упрощенный неявный метод Эйлера как альтернатива явному методу Эйлера, являющемуся наиболее распространенным в области численного решения уравнений, описывающих электрическую активность нервных клеток и кардиоцитов. Многие модели электрофизиологии имеют высокую степень жесткости, так как описывают динамику процессов с существенно разными характерными временами: миллисекундная деполяризации предшествует значительно более медленной гиперполяризации при формировании потенциала действия в электровозбудимых клетках. Оценка степени жесткости в работе проводится по формуле, не требующей вычисления собственных значений матрицы Якоби системы ОДУ. Эффективность численных методов сравнивается на примере типичных представителей из классов детальных и концептуальных моделей возбудимых клеток: модели Ходжкина–Хаксли для нейронов и Алиева–Панфилова для кардиоцитов. Сравнение эффективности численных методов проведено с использованием распространенных в биомедицинских задачах видов норм. Исследовано влияние степени жесткости моделей на величину ускорения при использовании упрощенного неявного метода: выигрыш во времени при высокой степени жесткости зафиксирован только для модели Ходжкина–Хаксли. Обсуждаются целесообразность применения простых методов и методов высоких порядков точности для решения задач электрофизиологии, а также устойчивость методов. Обсуждение позволяет прояснить вопрос о причинах отказа от использования высокоточных методов в пользу простых при проведении практических расчетов. На примере модели Ходжкина–Хаксли c различными степенями жесткости вычислены производные решения высших порядков и обнаружены их значительные максимальные абсолютные значения. Последние входят в формулы констант аппроксимации и, следовательно, нивелируют малость множителя, зависящего от порядка точности. Этот факт не позволяет считать погрешности численного метода малыми. Проведенный на качественном уровне анализ устойчивости явного метода Эйлера позволяет оценить вид функции параметров модели для описания границы области устойчивости. Описание границы области устойчивости, как правило, используется при априорном принятии решения о выборе величины шага численного интегрирования.
Ключевые слова: электрофизиология, детальные модели, концептуальные модели, жесткие системы, численные методы. -
Численный анализ естественной конвекции кориума в условиях внутрикорпусной локализации с учетом переменного тепловыделения
Компьютерные исследования и моделирование, 2021, т. 13, № 4, с. 807-822В представленном исследовании проводится численное моделирование охлаждения кориума, расплава керамического топлива ядерного реактора и оксидов конструкционных материалов, в горизонтальной полуцилиндрической полости, стенки которой поддерживаются при постоянной температуре, в условиях естественной конвекции.
Охлаждение кориума — это процесс характерный для тяжелой аварии на ядерном реакторе, которая может быть локализована путем удержания кориума внутри корпуса реактора, испытывающего внешнее охлаждение. Такой подход обеспечивает не только сравнительно простой способ удержания радиоактивности в пределах первого контура, но и возможность реализации на действующих блоках. Это выступает альтернативой ловушке расплава, еще одному методу локализации. Точный анализ и моделирование процесса охлаждения в таких условиях оказываются перспективной областью исследований в настоящее время.
В начальный момент времени температура кориума принимается равной температуре стенки. Кориум, несмотря на останов реактора, обладает остаточным тепловыделением, которое уменьшается со временем согласно формуле Вэя–Вигнера. Процесс естественной конвекции внутри полости описывается системой уравнений в приближении Буссинеска, которая включает в себя уравнение движения, уравнение неразрывности и уравнение энергии. Конвективные потоки считаются ламинарными и двумерными, теплофизические свойства жидкости считаются независимыми от температуры.
Краевая задача математической физики формулируется в безразмерных переменных «функция тока – завихренность». Полученные дифференциальные уравнения решаются численно при помощи метода конечных разностей c использованием локально-одномерной схемы Самарского применительно к уравнениям параболического типа.
В результате исследований получены временные зависимости среднего числа Нуссельта на верхней и нижней стенках полости в широком диапазоне изменения числа Рэлея от 103 до 106. Указанные зависимости также были проанализированы при различных значениях безразмерного времени работы реактора до аварии. Исследования проведены как на основе распределений изолиний функции тока и температуры, так и с использованием временных профилей интенсивности конвективного течения и теплообмена.
Ключевые слова: естественная конвекция, кориум, ядерный реактор, тяжелая авария, численное моделирование, метод конечных разностей. -
Анализ идентифицируемости математической модели пиролиза пропана
Компьютерные исследования и моделирование, 2021, т. 13, № 5, с. 1045-1057Работа посвящена численному моделированию и исследованию кинетической модели пиролиза пропана. Изучение кинетики реакций является необходимой стадией моделирования динамики газового потока в реакторе.
Кинетическая модель представляет собой нелинейную систему обыкновенных дифференциальных уравнений первого порядка с параметрами, роль которых играют константы скоростей стадий. Математическое моделирование процесса основано на использовании закона сохранения масс. Для решения исходной (прямой) задачи используется неявный метод решения жестких систем обыкновенных дифференциальных уравнений. Модель содержит 60 входных кинетических параметров и 17 выходных параметров, соответствующих веществам реакции, из которых наблюдаемыми являются только 9. В процессе решения задачи по оценке параметров (обратная задача) возникает вопрос неединственности набора параметров, удовлетворяющего имеющимся экспериментальным данным. Поэтому перед решением обратной задачи проводится оценка возможности определения параметров модели — анализ идентифицируемости.
Для анализа идентифицируемости мы используем ортогональный метод, который хорошо себя зарекомендовал для анализа моделей с большим числом параметров. Основу алгоритма составляет анализ матрицы чувствительно- сти методами дифференциальной и линейной алгебры, показывающей степень зависимости неизвестных параметров моделей от заданных измерений. Анализ чувствительности и идентифицируемости показал, что параметры модели устойчиво определяются по заданному набору экспериментальных данных. В статье представлен список параметров модели от наиболее идентифицируемого до наименее идентифицируемого. Учитывая анализ идентифицируемости математической модели, были введены более жесткие ограничения на поиск слабоидентифицируемых параметров при решении обратной задачи.
Обратная задача по оценке параметров была решена с использованием генетического алгоритма. В статье представлены найденные оптимальные значения кинетических параметров. Представлено сравнение экспериментальных и расчетных зависимостей концентраций пропана, основных и побочных продуктов реакции от температуры для разных расходов смеси. На основании соответствия полученных результатов физико-химическим законам и экспериментальным данным сделан вывод об адекватности построенной математической модели.
-
Компьютерное моделирование динамики валового регионального продукта: сравнительный анализ нейросетевых моделей
Компьютерные исследования и моделирование, 2025, т. 17, № 6, с. 1219-1236Анализ экономических показателей региона играет важную роль в управлении и планировании развития, при этом валовой региональный продукт (ВРП) является одним из ключевых индикаторов экономической деятельности. Применение искусственного интеллекта, в том числе нейросетевых технологий, позволяет значительно повысить точность и надежность прогнозов экономических процессов. В данном исследовании сравниваются три модели нейросетевых алгоритмов для прогнозирования ВРП одного из типичных регионов РФ — Удмуртской Республики — на основе временных рядов за период с 2000 по 2023 год. В качестве моделей выбраны нейронная сеть с алгоритмом летучей мыши (BA-LSTM), модель нейронной сети обратного распространения ошибки, оптимизированная с помощью генетического алгоритма (GA-BPNN), и нейросетевая модель Элмана, оптимизированная алгоритмом роя частиц (PSO-Elman). В ходе исследования были выполнены такие этапы нейросетевого моделирования, как подготовка исходных данных, обучение моделей и их сравнительный анализ по показателям точности и качества прогнозов. Такой подход позволяет оценить преимущества и недостатки каждой модели в контексте прогнозирования ВРП, а также определить наиболее перспективные направления для дальнейших исследований. Использование современных нейросетевых методов открывает новые возможности для автоматизации анализа региональной экономики и повышения качества прогнозных оценок, что особенно актуально при ограниченных данных и для оперативного принятия решений. В исследовании в качестве входных данных для прогнозирования ВРП используются такие факторы, как величина производственного капитала, среднегодовая численность трудовых ресурсов, доля продукции высокотехнологичных и наукоемких отраслей в ВРП, а также показатель, учитывающий инфляцию. Высокая точность прогнозов, достигнутая в результате включения этих факторов в нейросетевые модели, подтверждает наличие сильной связи между этими факторами и ВРП. Результаты исследования показали высокую точность нейросетевой модели BA-LSTM на валидационной выборке: коэффициент детерминации составил 0,82, средняя абсолютная процентная ошибка — 4,19%. Качество и надежность этой модели свидетельствуют о ее способности эффективно предсказы- вать динамику ВРП. В прогнозном периоде до 2030 года в Удмуртской Республике ожидается ежегодное увеличение ВРП +4,6% в текущих ценах или +2,5% в сопоставимых ценах 2023 года. К 2030 году прогнозируется ВРП на уровне 1264,5 млрд руб.
-
Численная модель механического отклика самоподъемной плавучей буровой установки на сейсмические воздействия
Компьютерные исследования и моделирование, 2022, т. 14, № 4, с. 853-871В работе представлены результаты численного моделирования напряженно-деформированного состояния самоподъемных плавучих буровых установок, использующихся для освоения шельфовых месторождений углеводородов. Изучены равновесное напряженное состояние установки, погруженной в донный грунт, и его изменение, вызванное внешним механическим воздействием. Рассмотрена частная задача, в рамках которой в роли внешнего воздействия выступает поверхностная сейсмическая волна от удаленного землетрясения. Исследован отклик системы «самоподъемная плавучая буровая установка – донный грунт» на такое воздействие: проанализировано перераспределение полей напряжений и деформаций в системе, вызванное сейсмическим воздействием. Рассмотрен вопрос устойчивости установки: продемонстрировано, что приход сейсмической волны приводит к резкому росту напряжений в определенных элементах опорных колонн, что может привести к потере устойчивости. Для численного моделирования рассмотренной контактной задачи теории упругости использован метод конечных элементов. Проверка корректности постановки задачи и сходимости ее решения была выполнена путем рассмотрения известной задачи о вдавливании жесткого цилиндра в упругое полупространство. Показано, что использующаяся для анализа устойчивости самоподъемной буровой установки численная схема дает верные результаты для рассмотренной модельной задачи при условии корректного построения сетки конечных элементов. В рамках работы были исследованы роли различных факторов, определяющих условия достижения напряжениями в самоподъемной плавучей буровой установке критических значений: рассмотрены степень выраженности сейсмического воздействия, механические свойства донного грунта и глубина погружения опорных колонн установки в грунт. Сделаны предварительные выводы о необходимости заглубления опорных колонн в донный грунт с учетомег о механических свойств и характерной для региона сейсмичности. Представленный в работе подход может быть использован в качестве инструмента для прогноза рисков, связанных с освоениемм есторождений углеводородов, расположенных на континентальном шельфе, а использованная схема численного моделирования — для решения класса контактных задач теории упругости, требующих анализа динамических процессов.
-
Использование приповерхностных сеток для численного моделирования вязкостных явлений в задачах гидродинамики судна
Компьютерные исследования и моделирование, 2023, т. 15, № 4, с. 995-1008Численное моделирование обтекания судового корпуса, работы гребного винта, а также решение других задач гидродинамики судна в адаптивных локально-измельченных сетках на основе прямоугольных начальных сеток обладают рядом преимуществ в области подготовки расчетов и являются весьма удобными для проведения экспресс-анализа. Однако при необходимости существенного уточнения моделирования вязкостных явлений возникает ряд сложностей, связанных с резким ростом числа неизвестных при адаптации расчетной сетки до высоких уровней, которая необходима для разрешения пограничных слоев, и снижением шага по времени в расчетах со свободной поверхностью из-за уменьшения пролетного времени проадаптированных ячеек. Для ухода от этих недостатков предлагается использовать для разрешения пограничных слоев дополнительные приповерхностные сетки, представляющие собой одномерные адаптации ближайших к стенке слоев расчетных ячеек основной сетки. Приповерхностные сетки являются дополнительными (или химерными), их объем не вычитается из объема основной сетки. Уравнения движения жидкости интегрируются в обеих сетках одновременно, а стыковка решений происходит по специальному алгоритму. В задаче моделирования обтекания судового корпуса приповерхностные сетки могут обеспечивать нормальное функционирование низкорейнольдсовых моделей турбулентности, что существенно уточняет характеристики потока в пограничном слое у гладких поверхностей при их безотрывном обтекании. При наличии на поверхности корпуса отрывов потока или других сложных явлений можно делить поверхность корпуса на участки и использовать приповерхностные сетки только на участках с простым обтеканием, что тем не менее обеспечивает большую экономию ресурсов. В задаче моделирования работы гребного винта приповерхностные сетки могут обеспечивать отказ от пристеночных функций на поверхности лопастей, что ведет к значительному уточнению получаемых на них гидродинамических сил. Путем изменения числа и конфигурации слоев приповерхностных ячеек можно варьировать разрешение в пограничном слое без изменения основной сетки, что делает приповерхностные сетки удобным инструментом исследования масштабных эффектов в рассмотренных задачах.
-
Анализ динамической системы «жертва – хищник – суперхищник»: семейство равновесий и его разрушение
Компьютерные исследования и моделирование, 2023, т. 15, № 6, с. 1601-1615В работе исследуется динамика конечномерной модели, описывающей взаимодействие трех популяций: жертвы $x(t)$, потребляющего ее хищника $y(t)$ и суперхищника $z(t)$, питающегося обоими видами. Математически задача записывается в виде системы нелинейных дифференциальных уравнений первого порядка с правой частью $[x(1-x)-(y+z)g;\,\eta_1^{}yg-d_1^{}f-\mu_1^{}y;\,\eta_2^{}zg+d_2^{}f-\mu_2^{}z]$, где $\eta_j^{}$, $d_j^{}$, $\mu_j^{}$ ($j=1,\,2$) — положительные коэффициенты. Рассматриваемая модель относится к классу кoсимметричных динамических систем при функциональном отклике Лотки – Вольтерры $g=x$, $f=yz$ и дополнительных условиях на параметры: $\mu_2^{}=d_2^{}\left(1+\frac{\mu_1^{}}{d_1^{}}\right)$, $\eta_2^{}=d_2^{}\left(1+\frac{\eta_1^{}}{d_1^{}}\right)$. В этом случае формируется семейство равновесий в виде прямой в фазовом пространстве. Проанализирована устойчивость равновесий семейства и изолированных равновесий, построены карты существования стационарных решений и предельных циклов. Изучено разрушение семейства при нарушении условий косимметрии и использовании моделей Хoллинга $g(x)=\frac x{1+b_1^{}x}$ и Беддингтона–ДеАнгелиса $f(y,\,z)=\frac{yz}{1+b_2^{}y+b_3^{}z}$. Для этого применяется аппарат теории косимметрии В.И. Юдовича, включающий вычисление косимметрических дефектов и селективных функций. С использованием численного эксперимента проанализированы инвазивные сценарии: внедрение суперхищника в систему «хищник–жертва», выдавливание хищника или суперхищника.
-
Разностные схемы расщепления для системы одномерных уравнений гемодинамики
Компьютерные исследования и моделирование, 2024, т. 16, № 2, с. 459-488Работа посвящена построению и анализу разностных схем для системы уравнений гемодинамики, полученной осреднением уравнений гидродинамики вязкой несжимаемой жидкости по поперечному сечению сосуда. Рассматриваются модели крови как идеальной и как вязкой ньютоновской жидкости. Предложены разностные схемы, аппроксимирующие уравнения со вторым порядком по пространственной переменной. Алгоритмы расчета по построенным схемам основаны на методе расщепления по физическим процессам, в рамках которого на одном шаге по времени уравнения модели рассматриваются раздельно и последовательно. Практическая реали- зация предложенных схем приводит к последовательному решению на каждом шаге по времени двух линейных систем с трехдиагональными матрицами. Показано, что схемы являются $\rho$-устойчивыми при незначительных ограничениях на шаг по времени в случае достаточно гладких решений.
При решении задачи с известным аналитическим решением показано, что имеет место сходимость численного решения со вторым порядком по пространственной переменной в широком диапазоне значений шага сетки. При проведении вычислительных экспериментов по моделированию течения крови в модельных сосудистых системах производилось сравнение предложенных схем с такими известными явными схемами, как схема Лакса – Вендроффа, Лакса – Фридрихса и МакКормака. При решении задач показано, что результаты, полученные с помощью предложенных схем, близки к результатам расчетов, полученных по другим вычислительными схемам, в том числе построенным на основе других методов дискретизации. Показано, что в случае разных пространственных сеток время расчетов для предложенных схем значительно меньше, чем в случае явных схем, несмотря на необходимость решения на каждом шаге систем линейных уравнений. Недостатками схем является ограничение на шаг по времени в случае разрывных или сильно меняющихся решений и необходимость использования экстраполяции значений в граничных точках сосудов. В связи с этим актуальными для дальнейших исследований являются вопросы об адаптации схем расщепления к решению задач с разрывными решениями и в случаях специальных типов условий на концах сосудов.
-
Математическая модель дифференциации общества с социальной напряженностью
Компьютерные исследования и моделирование, 2019, т. 11, № 5, с. 999-1012В статье моделируется развитие во времени многопартийной политической системы с учетом социальной напряженности. Предлагается система нелинейных дифференциальных уравнений относительно долей приверженцев партий и дополнительной скалярной переменной, характеризующей величину напряженности в обществе. Изменение доли каждой партии пропорционально текущему значению, умноженному на коэффициент, который состоит из притока беспартийных, перетоков членов из конкурирующих партий и убыли вследствие роста социальной напряженности. Напряженность прирастает пропорционально долям партий и снижается при их отсутствии. Число партий фиксировано, в модели отсутствуют механизмы объединения существующих или рождения новых партий.
Для исследования модели использован подход, основанный на выделении условий, при которых данная задача относится к классу косимметричных систем. Это позволяет проанализировать мультистабильность возможных динамических процессов и их разрушение при нарушении косимметрии. Существование косимметрии для системы дифференциальных уравнений обеспечивается наличием дополнительных связей на параметры, и при этом возможно возникновение непрерывных семейств стационарных и нестационарных решений. Для анализа сценариев нарушения косимметрии применяется подход на основе селективной функции. В случае с одной политической партией мультистабильности нет, каждому набору параметров соответствует только одно устойчивое решение. Для системы из двух партий показано, что возможны два семейства равновесий, а также семейство предельных циклов. Представлены результаты численных экспериментов, демонстрирующие разрушение семейств и реализацию различных сценариев, приводящих к стабилизации политической системы с сосуществованием обеих партий или к исчезновению одной из партий, когда часть населения перестает поддерживать одну из партий и становится безразличной.
Рассматриваемая модель может быть использована для прогнозирования межпартийной борьбы во время предвыборной кампании. В этом случае необходимо учитывать зависимость коэффициентов системы от времени.
Журнал индексируется в Scopus
Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"





