Все выпуски
- 2025 Том 17
- 2024 Том 16
- 2023 Том 15
- 2022 Том 14
- 2021 Том 13
- 2020 Том 12
- 2019 Том 11
- 2018 Том 10
- 2017 Том 9
- 2016 Том 8
- 2015 Том 7
- 2014 Том 6
- 2013 Том 5
- 2012 Том 4
- 2011 Том 3
- 2010 Том 2
- 2009 Том 1
-
Анализ эффективности методов машинного обучения в задаче распознавания жестов на основе данных электромиографических сигналов
Компьютерные исследования и моделирование, 2021, т. 13, № 1, с. 175-194При разработке систем человеко-машинных интерфейсов актуальной является задача распознавания жестов. Для выявления наиболее эффективного метода распознавания жестов был проведен анализ различных методов машинного обучения, используемых для классификации движений на основе электромиографических сигналов мышц. Были рассмотрены такие методы, как наивный байесовский классификатор (НБК), дерево решений, случайный лес, градиентный бустинг, метод опорных векторов, метод $k$-ближайших соседей, а также ансамбли методов (НБК и дерево решений, НБК и градиентный бустинг, градиентный бустинг и дерево решений). В качестве метода получения информации о жестах была выбрана электромиография. Такое решение не требует расположения руки в поле зрения камеры и может быть использовано для распознавания движений пальцев рук. Для проверки эффективности выбранных методов распознавания жестов было разработано устройство регистрации электромиографического сигнала мышц предплечья, которое включает в себя три электрода и ЭМГ-датчик, соединенный с микрокон- троллером и блоком питания. В качестве жестов были выбраны: сжатие кулака, знак «большой палец», знак «Виктория», сжатие указательного пальца и взмах рукой справа налево. Оценка эффективности методов классификации проводилась на основе значений доли правильных ответов, точности, полноты, а также среднего значения времени работы классификатора. Данные параметры были рассчитаны для трех вариантов расположения электромиографических электродов на предплечье. По результатам тести- рования, наиболее эффективными методами являются метод $k$-ближайших соседей, случайный лес и ансамбль НБК и градиентного бустинга, средняя точность которого для трех положений электродов составила 81,55 %. Также было определено положение электродов, при котором методы машинного обучения достигают максимального значения точности распознавания. При таком положении один из дифференциальных электродов располагается на месте пересечения глубокого сгибателя пальцев и длинного сгибателя большого пальца, второй — над поверхностным сгибателем пальцев
-
Стохастическая оптимизация в задаче цифрового предыскажения сигнала
Компьютерные исследования и моделирование, 2022, т. 14, № 2, с. 399-416В данной статье осуществляется сравнение эффективности некоторых современных методов и практик стохастической оптимизации применительно к задаче цифрового предыскажения сигнала (DPD), которое является важной составляющей процесса обработки сигнала на базовых станциях, обеспечивающих беспроводную связь. В частности, рассматривается два круга вопросов о возможностях применения стохастических методов для обучения моделей класса Винера – Гаммерштейна в рамках подхода минимизации эмпирического риска: касательно улучшения глубины и скорости сходимости данного метода оптимизации и относительно близости самой постановки задачи (выбранной модели симуляции) к наблюдаемому в действительности поведению устройства. Так, в первой части этого исследования внимание будет сосредоточено на вопросе о нахождении наиболее эффективного метода оптимизации и дополнительных к нему модификаций. Во второй части предлагается новая квази-онлайн-постановка задачи и, соответственно, среда для тестирования эффективности методов, благодаря которым результаты численного моделирования удается привести в соответствие с поведением реального прототипа устройства DPD. В рамках этой новой постановки далее осуществляется повторное тестирование некоторых избранных практик, более подробно рассмотренных в первой части исследования, и также обнаруживаются и подчеркиваются преимущества нового лидирующего метода оптимизации, оказывающегося теперь также наиболее эффективным и в практических тестах. Для конкретной рассмотренной модели максимально достигнутое улучшение глубины сходимости составило 7% в стандартном режиме и 5% в онлайн-постановке (при том что метрика сама по себе имеет логарифмическую шкалу). Также благодаря дополнительным техникам оказывается возможным сократить время обучения модели DPD вдвое, сохранив улучшение глубины сходимости на 3% и 6% для стандартного и онлайн-режимов соответственно. Все сравнения производятся с методом оптимизации Adam, который был отмечен как лучший стохастический метод для задачи DPD из рассматриваемых в предшествующей работе [Pasechnyuk et al., 2021], и с методом оптимизации Adamax, который оказывается наиболее эффективным в предлагаемом онлайн-режиме.
Ключевые слова: цифровое предыскажение, обработка сигнала, стохастическая оптимизация, онлайн-обучение. -
Моделирование транспортных потоков на основе квазигазодинамического подхода и теории клеточных автоматов с использованием суперкомпьютеров
Компьютерные исследования и моделирование, 2024, т. 16, № 1, с. 175-194Целью исследования являются моделирование динамики автотранспортных потоков на транспортных сетях мегаполисов и систематизация современного состояния дел в этой области. Во введении указывается, что на первый план выходит развитие интеллектуальных транспортных систем, которые становятся неотъемлемой частью современных транспортных технологий. Основным ядром таких систем являются адекватные математические модели, максимально приближенные к реальности. Отмечается, что в связи с большим объемом вычислений необходимо использование суперкомпьютеров, следовательно, создание специальных пар аллельных алгоритмов. В начале статьи приводится современная классификация моделей, обсуждаются отличительные особенности каждого класса со ссылками на соответствующие примеры. Далее основное внимание уделяется созданным авторами статьи разработкам в области как макроскопического, так и микроскопического моделирования и определению места этих разработок в приведенной выше классификации. Макроскопическая модель основана на приближении сплошной среды и использует идеологию квазигазодинамических систем уравнений. Указаны ее достоинства по сравнению с существующими моделями этого класса. Система уравнений модели представлена как в одномерном варианте, но с возможностью исследования многополосного движения, так и в двумерном варианте, с введением понятия боковой скорости, то есть скорости перестроения из полосы в полосу. Второй вариант позволяет проводить вычисления в расчетной области, соответствующей реальной геометрии дороги. Представлены тестовые расчеты движения по дороге с локальным расширением и по дороге с системой светофоров с различными светофорными режимами. Расчеты позволили в первом случае сделать интересные выводы о влиянии расширения на пропускную способность дороги в целом, а во втором случае — выбрать оптимальный режим для получения эффекта «зеленой волны». Микроскопическая модель основана на теории клеточных автоматов и однополосной модели Нагеля – Шрекенберга и обобщена авторами на случай многополосного движения. В модели реализованы различные поведенческие стратегии водителей. В качестве теста моделируется движение на реальном участке транспортной сети в центре г. Москвы. Причем для грамотного прохождения транспортных узлов сети в соответствии с правилами движения реализованы специальные алгоритмы, адаптированные для параллельных вычислений. Тестовые расчеты выполнены на суперкомпьютере К-100 ЦКП ИПМ им. М. В. Келдыша РАН.
-
Численное моделирование течения жидкости в насосе для перекачки крови в программном комплексе FlowVision
Компьютерные исследования и моделирование, 2023, т. 15, № 4, с. 1025-1038В программном комплексе FlowVision проведено численное моделирование течения жидкости в насосе для перекачки крови. Данная тестовая задача, предоставленная Центром устройств и радиологического здоровья Управления по санитарному надзору за качеством пищевых продуктов и медикаментов США, предусматривала рассмотрение течения жидкости в соответствии с несколькими расчетными режимами. При этом для каждого расчетного случая задавалось определенное значение расхода жидкости и скорости вращения ротора. Необходимые для расчетов данные в виде точной геометрии, условий потока и характеристик жидкости были предоставлены всем участникам исследования, использующим для моделирования различные программные комплексы. Во FlowVision численное моделирование проводилось для шести режимов с ньютоновской жидкостью и стандартной моделью турбулентности $k-\varepsilon$, дополнительно были проведены расчеты пятого режима с моделью турбулентности $k-\omega$ SST и с использованием реологической модели жидкости Каро. На первом этапе численного моделирования была исследована сходимость по сетке, на основании которой выбрана итоговая сетка с числом ячеек порядка 6 миллионов. В связи с большим количеством ячеек для ускорения исследования часть расчетов проводилась на кластере «Ломоносов-2». В результате численного моделирования были получены и проанализированы значения перепада давления между входом и выходом насоса, скорости между лопатками ротора и в области диффузора, а также проведена визуализация распределения скорости в определенных сечениях. Для всех расчетных режимов осуществлялось сравнение перепада давления, полученного численно, с экспериментальными данными, а для пятого расчетного режима также производилось сравнение с экспериментом по распределению скорости между лопатками ротора и в области диффузора. Анализ данных показал хорошее соответствие результатов расчетов во FlowVision с результатами эксперимента и численного моделирования в других программных комплексах. Полученные во FlowVision результаты решения теста от Управления по санитарному надзору за качеством пищевых продуктов и медикаментов США позволяют говорить о том, что данный программный комплекс может быть использован для решения широкого спектра задач гемодинамики.
Ключевые слова: насос для перекачки крови, программный комплекс FlowVision, гемодинамика, валидационные расчеты. -
Разработка системы ARM на базе блока обработки данных для вы- числений потока данных, реализованного на основе ИС
Компьютерные исследования и моделирование, 2015, т. 7, № 3, с. 505-509Просмотров за год: 1.Современные масштабные научные проекты становятся все более информационно ёмкими, и обработка хранимых данных в режиме offline является невозможной. Требуется высокая пропускная способность при вычислениях или Вычисления Потока Данных, чтобы иметь возможность обрабатывать терабайты данных в секунду; такие данные не могут быть элементами длительного хранения. Общепринятые дата-центры, основанные на стандартном аппаратном обеспечении, являются дорогими и настроены на вычислительную мощность. Общая пропускная способность может быть увеличена с помощью массивного параллелизма, чаще всего за счет повышенной вычислительной мощности и потребления энергии. Система ARM на основе ИС (SoC) может решить проблему системы ввода/вывода и соотношение CPU, доступность и эффективность использования энергии, так как ARM SoC являются элементами массового производства и разработаны на основе эффективного использования энергии в мобильных устройствах. На данный момент такой элемент обработки находится в разработке и нацелен на пропускную способность ввода/вывода в 20 Гб/c и значительную вычислительную мощность. Рассмотрены возможности ввода/вывода потребления системы ARM на основе ИС вместе с вычислением производительности и тестами на пропускную способность ввода/вывода.
-
Предсказание производительности избранных типов циклов над одномерными массивами посредством анализа эмбеддингов промежуточных представлений
Компьютерные исследования и моделирование, 2023, т. 15, № 1, с. 211-224Предложен метод отображения промежуточных представлений C-, C++-программ в пространство векторов (эмбеддингов) для оценки производительности программ на этапе компиляции, без необходимости исполнения. Использование эмбеддингов для данной цели позволяет не проводить сравнение графов исследуемых программ непосредственно, что вычислительно упрощает задачу сравнения программ. Метод основан на серии трансформаций исходного промежуточного представления (IR), таких как: инструментирование — добавление фиктивных инструкций в оптимизационном проходе компилятора в зависимости от разности смещений в текущей инструкции обращения к памяти относительно предыдущей, преобразование IR в многомерный вектор с помощью технологии IR2Vec с понижением размерности по алгоритму t-SNE (стохастическое вложение соседей с t-распределением). В качестве метрики производительности предлагается доля кэш-промахов 1-го уровня (D1 cache misses). Приводится эвристический критерий отличия программ с большей долей кэш-промахов от программ с меньшей долей по их образам. Также описан разработанный в ходе работы проход компилятора, генерирующий и добавляющий фиктивные инструкции IR согласно используемой модели памяти. Приведено описание разработанного программного комплекса, реализующего предложенный способ оценивания на базе компиляторной инфраструктуры LLVM. Проведен ряд вычислительных экспериментов на синтетических тестах из наборов программ с идентичными потоками управления, но различным порядком обращений к одномерному массиву, показано, что коэффициент корреляции между метрикой производительности и расстоянием до эмбеддинга худшей программы в наборе отрицателен вне зависимости от инициализации t-SNE, что позволяет сделать заключение о достоверности эвристического критерия. Также в статье рассмотрен способ генерации тестов. По результатам экспериментов, вариативность значений метрики производительности на исследуемых множествах предложена как метрика для улучшения генератора тестов.
-
Графовая сверточная нейронная сеть для быстрого и точного дизассемблирования инструкций x86
Компьютерные исследования и моделирование, 2024, т. 16, № 7, с. 1779-1792Дизассемблирование двоичных файлов x86 — важная, но нетривиальная задача. Дизассемблирование трудно выполнить корректно без отладочной информации, особенно на архитектуре x86, в которой инструкции переменного размера чередуются с данными. Более того, наличие непрямых переходов в двоичном коде добавляет еще один уровень сложности. Непрямые переходы препятствуют возможности рекурсивного обхода, распространенного метода дизассемблирования, успешно идентифицировать все инструкции в коде. Следовательно, дизассемблирование такого кода становится еще более сложным и требовательным, что еще больше подчеркивает проблемы, с которыми приходится сталкиваться в этой области. Многие инструменты, включая коммерческие, такие как IDA Pro, с трудом справляются с точным дизассемблированием x86. В связи с этим был проявлен определенный интерес к разработке более совершенного решения с использованием методов машинного обучения, которое потенциально может охватывать базовые, независимые от компилятора паттерны, присущие машинному коду, сгенерированному компилятором. Методы машинного обучения могут превосходитьпо точности классические инструменты. Их разработка также может занимать меньше времени по сравнению с эвристическими методами, реализуемыми вручную, что позволяет переложитьо сновную нагрузку на сбор большого представительного набора данных исполняемых файлов с отладочной информацией. Мы усовершенствовали существующую архитектуру на основе рекуррентных графовых сверточных нейронных сетей, которая строит граф управления и потоков для дизассемблирования надмножеств инструкций. Мы расширили граф информацией о потоках данных: при кодировании входной программы, мы добавляем ребра потока управления и зависимостей от регистров, вдохновленные вероятностным дизассемблированием. Мы создали открытый набор данных для идентификации инструкций x86, основанный на комбинации набора данных ByteWeight и нескольких пакетов Debian с открытым исходным кодом. По сравнению с IDA Pro, современным коммерческим инструментом, наш подход обеспечивает более высокую точность при сохранении высокой производительности в наших тестах. Он также хорошо себя показывает по сравнению с существующими подходами машинного обучения, такими как DeepDi.
-
Прогнозирование розничной торговли на высокочастотных обезличенных данных
Компьютерные исследования и моделирование, 2023, т. 15, № 6, с. 1713-1734Развитие технологий определяет появление данных с высокой детализацией во времени и пространстве, что расширяет возможности анализа, позволяя рассматривать потребительские решения и конкурентное поведение предприятий во всем их многообразии, с учетом контекста территории и особенностей временных периодов. Несмотря на перспективность таких исследований, в настоящее время в научной литературе они представлены ограниченно, что определяется их особенностями. С целью их раскрытия в статье обращается внимание на ключевые проблемы, возникающие при работе с обезличенными высокочастотными данными, аккумулируемыми фискальными операторами, и направления их решения, проводится спектр тестов, направленный на выявление возможности моделирования изменений потребления во времени и пространстве. Особенности нового вида данных рассмотрены на примере реальных обезличенных данных, полученных от оператора фискальных данных «Первый ОФД» (АО «Энергетические системы и коммуникации»). Показано, что одновременно со спектром свойственных высокочастотным данным проблем существуют недостатки, связанные с процессом формирования данных на стороне продавцов, требующие более широкого применения инструментов интеллектуального анализа данных. На рассматриваемых данных проведена серия статистических тестов, включая тест на наличие ложной регрессии, ненаблюдаемых эффектов в остатках модели, последовательной корреляции и кросс-секционной зависимости остатков панельной модели, авторегрессии первого порядка в случайных эффектах, сериальной корреляции на первых разностях панельных данных и др. Наличие пространственной автокорреляции данных тестировалось с помощью модифицированных тестов множителей Лагранжа. Проведенные тесты показали наличие последовательной корреляции и пространственной зависимости данных, обуславливающих целесообразность применения методов панельного и пространственного анализа применительно к высокочастотным данным, аккумулируемым фискальными операторами. Построенные модели позволили обосновать пространственную связь роста продаж и ее зависимость от дня недели. Ограничением для повышения предсказательной возможности построенных моделей и последующего их усложнения, за счет включения объясняющих факторов, стало отсутствие в открытом доступе статистики, сгруппированной в необходимой детализации во времени и пространстве, что определяет актуальность формирования баз высокочастотных географически структурированных данных.
-
Характеристика тестирования центрального процессора на базе процессоров ARM
Компьютерные исследования и моделирование, 2015, т. 7, № 3, с. 581-586Просмотров за год: 1.Большие научные проекты генерируют данные на всё более возрастающих скоростях. Типичные методы включают в себя хранение данных на диске, после незначительного фильтрования, а затем их обработку на больших компьютерных фермах. Производство данных достигло той точки, когда требуется обработка в режиме on-line, чтобы отфильтровать данные до управляемых размеров. Потенциальное решение включает в себя использование низко затратных процессоров ARM с маленькой мощностью в больших массивах для обеспечения массивного распараллеливания для вычислений потока данных (DSC). Главное преимущество в использовании систем на одном кристалле (SoCs) присуще самой философии этой разработки. Системы на микросхеме, прежде всего, используются в мобильных устройствах и, следовательно, потребляют меньше энергии при своей относительно хорошей производительности. Дано описание тестирования трех различных моделей процессоров ARM.
-
Описание тестирования памяти однокристальных систем на основе ARM
Компьютерные исследования и моделирование, 2015, т. 7, № 3, с. 607-613Мощность вычислений традиционно находится в фокусе при разработке крупномасштабных вычислительных систем, в большинстве случаев такие проекты остаются плохо оборудованными и не могут эффективно справляться с ориентированными на высокую производительность рабочими нагрузками. Кроме того, стоимость и вопросы энергопотребления для крупномасштабных вычислительных систем всё ещё остаются источником беспокойства. Потенциальное решение включает в себя использование низко затратных процессоров ARM с маленькой мощностью в больших массивах в манере, которая обеспечивает массивное распараллеливание и высокую пропускную способность, производительность (относительно существующих крупномасштабных вычислительных проектов). Предоставление большего приоритета производительности и стоимости повышает значимость производительности оперативной памяти и оптимизации проекта до высокой производительности всей системы. Используя несколько эталонных тестов производительности оперативной памяти для оценки различных аспектов производительности RAM и кэш-памяти, мы даем описание производительности четырех различных моделей однокристальной системы на основе ARM, а именно Cortex-A9, Cortex-A7, Cortex-A15 r3p2 и Cortex-A15 r3p3. Затем мы обсуждаем значимость этих результатов для вычислений большого объема и потенциала для ARM- процессоров.
Журнал индексируется в Scopus
Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"