Текущий выпуск Номер 5, 2025 Том 17

Все выпуски

Результаты поиска по 'случайные переходы':
Найдено статей: 33
  1. Курушина С.Е., Федорова Е.А., Гуровская Ю.А.
    Методика анализа шумоиндуцированных явлений в двухкомпонентных стохастических системах реакционно-диффузионного типа со степенной нелинейностью
    Компьютерные исследования и моделирование, 2025, т. 17, № 2, с. 277-291

    В работе построена и исследуется обобщенная модель, описывающая двухкомпонентные системы реакционно-диффузионного типа со степенной нелинейностью и учитывающая влияние внешних шумов. Для анализа обобщенной модели разработана методология, включающая в себя линейный анализ устойчивости, нелинейный анализ устойчивости и численное моделирование эволюции системы. Методика проведения линейного анализа опирается на базовые подходы, в которых для получения характеристического уравнения используется матрица линеаризации. Нелинейный анализ устойчивости проводится с точностью до моментов третьего порядка включительно. Для этого функции, описывающие динамику компонент, раскладываются в ряд Тейлора до слагаемых третьего порядка. Затем с помощью теоремы Новикова проводится процедура усреднения. В результате полученные уравнения образуют бесконечную иерархично подчиненную структуру, которую в определенный момент необходимо прервать. Для этого пренебрегаем вкладом слагаемых выше третьего порядка как в самих уравнениях, так и при построении уравнений моментов. Полученные уравнения образуют набор линейных уравнений, из которых формируется матрица устойчивости. Эта матрица имеет довольно сложную структуру, в связи с чем ее решение может быть получено только численно. Для проведения численного исследования эволюции системы выбран метод переменных направлений. Из-за наличия в анализируемой системе стохастической части метод был модифицирован таким образом, что на целых слоях проводится генерация случайных полей с заданным распределением и функцией корреляции, отвечающих за шумовой вклад в общую нелинейность. Апробация разработанной методологии проведена на предложенной Barrio et al. модели реакции – диффузии, по результатам исследования которой им показана схожесть получаемых структур с пигментацией рыб. В настоящей работе внимание сосредоточено на анализе поведения системы в окрестности ненулевой стационарной точки. Изучена зависимость действительной части собственных значений от волнового числа. В линейном анализе получена область значений волновых чисел, при которых возникает неустойчивость Тьюринга. Нелинейный анализ и численное моделирование эволюции системы проводятся для параметров модели, которые, напротив, находятся вне области неустойчивости Тьюринга. В рамках нелинейного анализа найдены интенсивности аддитивного шума, при которых, несмотря на отсутствие условий для возникновения диффузионной неустойчивости, система переходит в неустойчивое состояние. Результаты численного моделирования эволюции апробируемой модели демонстрируют процесс образования пространственных структур тьюрингового типа при воздействии на нее аддитивного шума.

  2. Павлов Е.А., Осипов Г.В.
    Синхронизация и хаос в сетях связанных отображений в приложении к моделированию сердечной динамики
    Компьютерные исследования и моделирование, 2011, т. 3, № 4, с. 439-453

    На основе отображения, построенного путем упрощения и редукции модели Луо–Руди, исследуется динамика ансамблей связанных элементов в приложении к моделированию пространственно-временных процессов в сердечной мышце. В частности, представлены возможности отображения в воспроизведении различных режимов сердечной активности, в том числе возбудимого и осцилляторного режимов. Рассмотрена динамика цепочек и решеток связанных осцилляторных элементов со случайным распределением индивидуальных частот. Обнаружены эффекты кластерной синхронизации и переход к глобальной синхронизации при увеличении силы связи. Проанализировано распространение импульсов по цепочке, а также концентрических и спиральных волн в двумерной решетке связанных отображений, моделирующих динамику возбудимых сред. Изучены характеристики спиральной волны в зависимости от изменения индивидуальных параметров и связи. Проведено исследование смешанных ансамблей, состоящих из возбудимых и осцилляторных элементов с градиентным изменением свойств, в том числе в приложении к задаче описания нормального и патологического характера функционирования синоатриального узла.

    Цитирований: 3 (РИНЦ).
  3. При моделировании турбулентных течений неизбежно приходится сталкиваться с выбором между точностью и скоростью проведения расчетов. Так, DNS- и LES-модели позволяют проводить более точные расчеты, но являются более вычислительно затратными, чем RANS-модели. Поэтому сейчас RANS- модели являются наиболее часто используемыми при проведении практических расчетов. Но и расчеты с применением RANS-моделей могут быть значительно вычислительно затратными для задач со сложной геометрией или при проведении серийных расчетов по причине необходимости разрешения пристенного слоя. Существуют подходы, позволяющие значительно ускорить вычисления для RANS-моделей. Например, пристеночные функции или методы, основанные на декомпозиции расчетной области. Тем не менее они неизбежно теряют в точности за счет упрощения модели в пристенной области. Для того чтобы одновременно получить и вычислительно эффективную и более точную модель, может быть построена суррогатная модель на основании упрощенной модели и с использованием знаний о предыдущих расчетах, полученных более точной моделью, например из некоторых результатов серийных расчетов.

    В статье строится оператор перехода, позволяющий по результатам расчетов менее точной модели получить поле течения как при применении более точной модели. В данной работе результаты расчетов, полученные с помощью менее точной модели Спаларта–Аллмараса с применением пристенной декомпозиции, уточняются на основании расчетов схожих течений, полученных с помощью базовой модели Спаларта–Аллмараса с подробным разрешением пристенной области, с помощью методов машинного обучения. Оператор перехода от уточняемой модели к базовой строится локальным образом. То есть для уточнения результатов расчета в каждой точке расчетной области используются значения переменных пространства признаков (сами переменные поля и их производные) в этой точке. Для построения оператора используется алгоритм Random Forest. Эффективность и точность построенной суррогатной модели демонстрируется на примере двумерной задачи сверхзвукового турбулентного обтекания угла сжатия при различных числах Рейнольдса. Полученный оператор применяется к решению задач интерполяции и экстраполяции по числу Рейнольдса, также рассматривается топологический случай — интерполяция и экстраполяция по величине угла сжатия $\alpha$.

  4. Башкирцева И.А., Перевалова Т.В., Ряшко Л.Б.
    Метод стохастической чувствительности в анализе динамических трансформаций в модели «две жертвы – хищник»
    Компьютерные исследования и моделирование, 2022, т. 14, № 6, с. 1343-1356

    Данная работа посвящена исследованию проблемы моделирования и анализа сложных колебательных режимов, как регулярных, так и хаотических, в системах взаимодействующих популяций в присутствии случайных возмущений. В качестве исходной концептуальной детерминированной модели рассматривается вольтерровская система трех дифференциальных уравнений, описывающая динамику популяций жертв двух конкурирующих видов и хищника. Данная модель учитывает следующие ключевые биологические факторы: естественный прирост жертв, их внутривидовую и межвидовую конкуренцию, вымирание хищников в отсутствие жертв, скорость выедания жертв хищником, прирост популяции хищника вследствие выедания жертв, интенсивность внутривидовой конкуренции в популяции хищника. В качестве бифуркационного параметра используется скорость роста второй популяции жертв. На некотором интервале изменения этого параметра система демонстрирует большое разнообразие динамических режимов: равновесных, колебательных и хаотических. Важной особенностью этой модели является мультистабильность. В данной работе мы фокусируемся на изучении параметрической зоны тристабильности, когда в системе сосуществуют устойчивое равновесие и два предельных цикла. Такая биритмичность в присутствии случайных возмущений порождает новые динамические режимы, не имеющие аналогов в детерминированном случае. Целью статьи является детальное изучение стохастических явлений, вызванных случайными флуктуациями скорости роста второй популяции жертв. В качестве математической модели таких флуктуаций мы рассматриваем белый гауссовский шум. Методами прямого численного моделирования решений соответствующей системы стохастических дифференциальных уравнений выявлены и описаны следующие феномены: однонаправленные стохастические переходы с одного цикла на другой; триггерный режим, вызванный переходами между циклами; индуцированный шумом переход с циклов на равновесие, отвечающее вымиранию популяции хищника и второй жертвы. В статье представлены результаты анализа этих явлений с помощью показателей Ляпунова, выявлены параметрические условия переходов от порядка к хаосу и от хаоса к порядку. Для аналитического исследования таких вызванных шумом многоэтапных переходов были применены техника функций стохастической чувствительности и метод доверительных областей. В статье показано, как этот математический аппарат позволяет спрогнозировать интенсивность шума, приводящего к качественным трансформациям режимов стохастической популяционной динамики.

  5. Беляев А.В.
    Стохастические переходы от порядка к хаосу в метапопуляционной модели с миграцией
    Компьютерные исследования и моделирование, 2024, т. 16, № 4, с. 959-973

    Данная работа посвящена исследованию проблемы моделирования и анализа динамических режимов, как регулярных, так и хаотических, в системах связанных популяций в присутствии случайных возмущений. В качестве исходной детерминированной популяционной модели рассматривается дискретная модель Рикера. В работе исследуется динамика двух популяций, связанных миграцией. Миграция пропорциональна разнице между плотностями двух популяций с коэффициентом связи, который отвечает за силу миграционного потока. Изолированные популяционные подсистемы, не учитывающие миграцию и моделируемые отображением Рикера, демонстрируют различные динамические режимы: равновесный, периодический и хаотический. В данной работе в качестве бифуркационного параметра используется коэффициент связи, а также фиксируются параметры естественного прироста популяций, при которых одна изп одсистем находится в равновесном режиме, а во второй преобладает хаотический режим. Связывание двух популяций посредством миграции порождает новые динамические режимы, не наблюдавшиеся в изолированной модели. Целью данной статьи является анализ динамических режимов корпоративной динамики при вариации интенсивности перетоков между популяционными подсистемами. В статье представлен бифуркационный анализа ттракторов детерминированной модели двух связанных популяций, выявлены зоны моно- и бистабильности, даны примеры регулярных и хаотических аттракторов. Основной акцент данной работы сделан на сравнении устойчивости динамических режимов к случайным возмущениям в коэффициенте интенсивности миграции. Методами прямого численного моделирования выявлены и описаны индуцированные шумом переходы с периодического аттрактора на хаотический. В статье представлены результаты анализа стохастических явлений с помощью показателя Ляпунова. Показано, что в рассматриваемой модели существует зона изменения бифуркационного параметра, при котором даже с увеличением интенсивности случайных возмущений не происходит переход от порядка к хаосу. Для аналитического исследования вызванных шумом переходов применены техника функции стохастической чувствительности и метод доверительных областей. В работе показано, как с помощью этого математического аппарата можно предсказать критическую интенсивность шума, вызывающую трансформацию периодического режима в хаотический.

  6. Борисов А.В., Краснобаева Л.А., Шаповалов А.В.
    Влияние диффузии и конвекции на динамику хемостата
    Компьютерные исследования и моделирование, 2012, т. 4, № 1, с. 121-129

    В работе рассматривается популяционная динамика, описываемая модифицированной моделью хемостата, в которую включены диффузия, хемотаксис и нелокальные конкурентные потери. Для учета воздействия внешнего окружения экосистемы на популяцию, при построении численных решений в систему уравнений модели включались случайные параметры. С помощью компьютерного моделирования выявлено три динамических режима, зависящих от значений параметров системы: переход от начального состояния к пространственно-однородному стационарному состоянию, к пространственно-неоднородному распределению популяционной концентрации и к элиминации популяционной концентрации.

    Просмотров за год: 1.
  7. Екатеринчук Е.Д., Ряшко Л.Б.
    Анализ стохастических аттракторов квадратичной дискретной популяционной модели с запаздыванием
    Компьютерные исследования и моделирование, 2015, т. 7, № 1, с. 145-157

    В работе рассматривается квадратичная дискретная модель популяционной динамики с запаздыванием под воздействием случайных возмущений. Анализ стохастических аттракторов модели проводится с помощью методов прямого численного моделирования и техники функций стохастической чувствительности. Показана деформация вероятностных распределений случайных состояний вокруг устойчивых равновесий и циклов при изменении параметров. Продемонстрировано явление индуцированных шумом переходов в зоне дискретных циклов.

    Просмотров за год: 3. Цитирований: 1 (РИНЦ).
  8. Говорухин В.Н., Загребнева А.Д.
    Популяционные волны и их бифуркации в модели «активный хищник – пассивная жертва»
    Компьютерные исследования и моделирование, 2020, т. 12, № 4, с. 831-843

    В работе изучаются пространственно-временные режимы, реализующиеся в системе типа «хищник– жертва». Предполагается, что хищники перемещаются направленно и случайно, а жертвы распространяются только диффузионно. Демографические процессы в популяции хищников не учитываются, их общая численность постоянна и является параметром. Переменные модели — плотности популяций хищников и жертв, скорость хищников — связаны между собой системой трех уравнений типа «реакция – диффузия – адвекция». Система рассматривается на кольцевом ареале (с периодическими условиями на границах интервала). Исследуются бифуркации волновых режимов при изменении двух параметров — общего количества хищников и их коэффициента таксисного ускорения.

    Основным методом исследования является численный анализ. Пространственная аппроксимация задачи в частных производных производится методом конечных разностей. Интегрирование полученной системы обыкновенных дифференциальных уравнений по времени проводится методом Рунге – Кутты. Для анализа динамических режимов используются построение отображения Пуанкаре, расчет показателей Ляпунова и спектр Фурье.

    Показано, что популяционные волны в предположениях модели могут возникать в результате направленных перемещений хищников. Динамика в системе качественно меняется при росте их общего количества. При малых значениях устойчив стационарный однородный режим, который сменяется автоколебаниями в виде бегущих волн. Форма волн претерпевает изменения с ростом бифуркационного параметра, ее усложнение происходит за счет увеличения числа временных колебательных мод. Большой коэффициент таксисного ускорения приводит к переходу от многочастотных к хаотическим и гиперхаотическим популяционным волнам. При большом количестве хищников реализуется стационарный режим с отсутствием жертв.

  9. Ряшко Л.Б., Слепухина Е.С.
    Анализ индуцированных шумом пачечных колебаний в двумерной модели Хиндмарш–Розе
    Компьютерные исследования и моделирование, 2014, т. 6, № 4, с. 605-619

    В работе исследуется стохастическая динамика двумерной модели Хиндмарш–Розе в параметрической зоне сосуществования устойчивых равновесий и предельных циклов. Изучается явление индуцированных шумом переходов между аттракторами. Под воздействием случайных возмущений равновесные и периодические режимы объединяются в пачечные: система демонстрирует чередование малых колебаний около равновесия с осцилляциями больших амплитуд. Проводится анализ этого эффекта с помощью техники функций стохастической чувствительности и предлагается метод оценки критических значений интенсивности шума.

    Просмотров за год: 1.
  10. Абрамова Е.П., Рязанова Т.В.
    Динамические режимы стохастической модели «хищник –жертва» с учетом конкуренции и насыщения
    Компьютерные исследования и моделирование, 2019, т. 11, № 3, с. 515-531

    В работе рассматривается модель «хищник – жертва» с учетом конкуренции жертв, хищников за отличные от жертвы ресурсы и их взаимодействия, описываемого трофической функцией Холлинга второго типа. Проводится анализ аттракторов модели в зависимости от коэффициента конкуренции хищников. В детерминированном случае данная модель демонстрирует сложное поведение, связанное с локальными (Андронова–Хопфа и седлоузловая) и глобальной (рождение цикла из петли сепаратрисы) бифуркациями. Важной особенностью этой модели является исчезновение устойчивого цикла вследствие седлоузловой бифуркации. В силу наличия внутривидовой конкуренции в обеих популяциях возникают параметрические зоны моно- и бистабильности. В зоне параметров бистабильности система имеет сосуществующие аттракторы: два равновесия или цикл и равновесие. Проводится исследование геометрического расположения аттракторов и сепаратрис, разделяющих их бассейны притяжения. Понимание взаимного расположения аттракторов и сепаратрис, в совокупности с чувствительностью аттракторов к случайным воздействиям, является важной составляющей в изучении стохастических явлений. В рассматриваемой модели сочетание нелинейности и случайных возмущений приводит к появлению новых феноменов, не имеющих аналогов в детерминированном случае, таких как индуцированные шумом переходы через сепаратрису, стохастическая возбудимость и генерация осцилляций смешанных мод. Для параметрического исследования этих феноменов используются аппарат функции стохастической чувствительности и метод доверительных областей, эффективность которых проверялась на широком круге моделей нелинейной динамики. В зонах бистабильности проводится исследование деформации равновесного или осцилляционного режимов под действием шума. Геометрическим критерием возникновения такого рода качественных изменений служит пересечение доверительных областей с сепаратрисой детерминированной модели. В зоне моностабильности изучаются феномены резкого изменения численности и вымирания одной или обеих популяций при малых изменениях внешних условий. С помощью аппарата доверительных областей решается задача оценки близости стохастической популяции к опасным границам, при достижении которых сосуществование популяций разрушается и наблюдается их вымирание.

    Просмотров за год: 28.
Страницы: « первая предыдущая следующая

Журнал индексируется в Scopus

Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"

Международная Междисциплинарная Конференция МАТЕМАТИКА. КОМПЬЮТЕР. ОБРАЗОВАНИЕ.