Текущий выпуск Номер 2, 2025 Том 17

Все выпуски

Результаты поиска по 'рынок':
Найдено авторов: 2
  1. Рычков В.Н. (Rychkov V.N.)
  2. Рычков В.Н. (Rychkov V.N.)
Найдено статей: 39
  1. Стеряков А.А.
    Об одном универсальном методе построения моделей для сложных многоагентных систем
    Компьютерные исследования и моделирование, 2013, т. 5, № 4, с. 513-523

    Врабо те предлагается универсальный метод построения агентных имитационных моделей сложных систем, предполагающий их компьютерную реализацию на языках объектноориентированного программирования. Метод определяет способ построения математических моделей агентов и их взаимодействия, а также описывает архитектуру комплекса программ для имитации динамики моделируемой системы. Эффективность предлагаемого метода иллюстрируется примерами его применения для моделирования сложных систем из двух областей: экономической (модель финансового рынка с неоднородными агентами) и биологической (пространственно-временная имитация взаимодействия биологических популяций).

    Просмотров за год: 5. Цитирований: 2 (РИНЦ).
  2. От редакции
    Компьютерные исследования и моделирование, 2018, т. 10, № 2, с. 163-164
    Просмотров за год: 6.
  3. От редакции
    Компьютерные исследования и моделирование, 2018, т. 10, № 6, с. 733-735
    Просмотров за год: 20.
  4. От редакции
    Компьютерные исследования и моделирование, 2019, т. 11, № 5, с. 773-776
  5. От редакции
    Компьютерные исследования и моделирование, 2020, т. 12, № 3, с. 471-473
  6. От редакции
    Компьютерные исследования и моделирование, 2021, т. 13, № 1, с. 5-8
  7. От редакции
    Компьютерные исследования и моделирование, 2021, т. 13, № 6, с. 1097-1100
  8. От редакции
    Компьютерные исследования и моделирование, 2025, т. 17, № 2, с. 175-177
  9. Копысов С.П., Кузьмин И.М., Недожогин Н.С., Новиков А.К., Рычков В.Н., Сагдеева Ю.А., Тонков Л.Е.
    Параллельная реализация конечно-элементных алгоритмов на графических ускорителях в программном комплексе FEStudio
    Компьютерные исследования и моделирование, 2014, т. 6, № 1, с. 79-97

    Рассматриваются новые подходы и алгоритмы распараллеливания вычислений метода конечных элементов, реализованные в программном комплексе FEStudio. Представлена программная модель комплекса, позволяющая расширять возможности распараллеливания на различных уровнях вычислений. Разработаны параллельные алгоритмы численного интегрирования динамических задач и локальных матриц жесткости, формирования и решения систем уравнений с использованием модели параллелизма данных CUDA.

    Просмотров за год: 4. Цитирований: 24 (РИНЦ).
  10. Любушин А.А., Фарков Ю.А.
    Синхронные компоненты финансовых временных рядов
    Компьютерные исследования и моделирование, 2017, т. 9, № 4, с. 639-655

    В статье предлагается метод совместного анализа многомерных финансовых временных рядов, основанный на оценке набора свойств котировок акций в скользящем временном окне и последующем усреднении значений свойств по всем анализируемым компаниям. Основной целью анализа является построение мер совместного поведения временных рядов, реагирующих на возникновение синхронной или когерентной составляющей. Когерентность поведения характеристик сложной системы является важным признаком, позволяющим оценить приближение системы к резким изменениям своего состояния. Фундаментом для поиска предвестников резких изменений является общая идея увеличения корреляции случайных флуктуаций параметров системы по мере ее приближения к критическому состоянию. Приращения временных рядов стоимостей акций имеют выраженный хаотический характер и обладают большой амплитудой индивидуальных помех, на фоне которых слабый общий сигнал может быть выделен лишь на основе его коррелированности в разных скалярных компонентах многомерного временного ряда. Известно, что классические методы анализа, основанные на использовании корреляций между соседними отсчетами, являются малоэффективными при обработке финансовых временных рядов, поскольку с точки зрения корреляционной теории случайных процессов приращения стоимости акций формально имеют все признаки белого шума (в частности, «плоский спектр» и «дельта-образную» автокорреляционную функцию). В связи с этим предлагается перейти от анализа исходных сигналов к рассмотрению последовательностей их нелинейных свойств, вычисленных во временных фрагментах малой длины. В качестве таких свойств используются энтропия вейвлет-коэффициентов при разложении в базис Добеши, показатели мультифрактальности и авторегрессионная мера нестационарности сигнала. Построены меры син- хронного поведения свойств временных рядов в скользящем временном окне с использованием метода главных компонент, значений модулей всех попарных коэффициентов корреляции и множественной спектральной меры когерентности, являющейся обобщением квадратичного спектра когерентности между двумя сигналами. Исследованы акции 16 крупных российских компаний с начала 2010 по конец 2016 годов. С помощью предложенного метода идентифицированы два интервала времени синхронизации российского фондового рынка: с середины декабря 2013 г. по середину марта 2014 г. и с середины октября 2014 г. по середину января 2016 г.

    Просмотров за год: 12. Цитирований: 2 (РИНЦ).
Страницы: следующая последняя »

Журнал индексируется в Scopus

Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"

Международная Междисциплинарная Конференция МАТЕМАТИКА. КОМПЬЮТЕР. ОБРАЗОВАНИЕ.