Текущий выпуск Номер 5, 2025 Том 17

Все выпуски

Результаты поиска по 'распределенные системы':
Найдено статей: 159
  1. Ха Д.Т., Цибулин В.Г.
    Уравнения диффузии–реакции–адвекции для системы «хищник–жертва» в гетерогенной среде
    Компьютерные исследования и моделирование, 2021, т. 13, № 6, с. 1161-1176

    Анализируются варианты учета неоднородности среды при компьютерном моделировании динамики хищника и жертвы на основе системы уравнений реакции–диффузии–адвекции. Локальное взаимодействие видов (члены реакции) описывается логистическим законом роста для жертвы и соотношениями Беддингтона – ДеАнгелиса, частными случаями которых являются функциональный отклик Холлинга второго рода и модель Ардити – Гинзбурга. Рассматривается одномерная по пространству задача для неоднородного ресурса (емкости среды) и трех видов таксиса (жертвы на ресурс и от хищника, хищника к жертве). Используется аналитический подход для исследования устойчивости стационарных решений в случае локального взаимодействия (бездиффузионный подход) и вычисления на основе метода прямых для учета диффузионных и адвективных процессов. Сравнение критических значений параметра смертности хищников показало, что при постоянных коэффициентах в соотношениях Беддингтона – ДеАнгелиса получаются переменные по пространственной координате критические величины, а для модели Ардити – Гинзбурга данный эффект не наблюдается. Предложена модификация членов реакции, позволяющая учесть неоднородность ресурса. Представлены численные результаты по динамике видов для больших и малых миграционных коэффициентов, демонстрирующие снижение влияния вида локальных членов на формирующиеся пространственно-временные распределения популяций. Проанализированы бифуркационные переходы при изменении параметров диффузии–адвекции и членов реакции.

  2. Русяк И.Г., Тененев В.А., Суфиянов В.Г., Клюкин Д.А.
    Моделирование неравномерного горения и напряженно-деформированного состояния пороховых элементов трубчатого заряда при выстреле
    Компьютерные исследования и моделирование, 2022, т. 14, № 6, с. 1281-1300

    Врабо те представлена физико-математическая постановка задач внутренней баллистики артиллерийского выстрела для заряда, состоящего из совокупности пороховых трубок, и их напряженно-деформированного состояния. Горение и движение пучка пороховых трубок по каналу ствола моделируются эквивалентным трубчатым зарядом всестороннего горения. Предполагается, что эквивалентная трубка движется по оси канала ствола. Скорость движения эквивалентного трубчатого заряда и его текущее положение определяются из второго закона Ньютона. При расчете параметров течения использованы двумерные осесимметричные уравнения газовой динамики, для решения которых строится осесимметричная ортогонализированная разностная сетка, адаптирующаяся к условиям течения. Для численного решения системы газодинамических уравнений применяется метод контрольного объема. Параметры газа на границах контрольных объемов определяются с использованием автомодельного решения задачи о распаде произвольного разрыва С. К. Годунова. Напряженно-деформированное состояние моделируется для отдельной горящей пороховой трубки, находящейся в поле нестационарных газодинамических параметров. Расчет газодинамических параметров выстрела осуществляется без учета деформированного состояния пороховых элементов. При данных условиях рассмотрено поведение пороховых элементов при выстреле. Для решения нестационарной задачи упругости используется метод конечных элементов с разбиением области расчета на треугольные элементы. В процессе выгорания пороховой трубки расчетная сетка на каждом временном слое динамической задачи полностью обновляется в связи с изменением границ порохового элемента за счет горения. Представлены временные зависимости параметров внутрибаллистического процесса и напряженно-деформированного состояния пороховых элементов, а также распределения основных параметров течения продуктов горения в различные моменты времени. Установлено, что трубчатые пороховые элементы в процессе выстрела испытывают существенные деформации, которые необходимо учитывать при решении основной задачи внутренней баллистики. Полученные данные дают представления об уровне эквивалентных напряжений, действующих в различных точках порохового элемента. Представленные результаты говорят об актуальности сопряженной постановки задачи газовой динамики и напряженно-деформированного состояния для зарядов, состоящих из трубчатых порохов, поскольку это позволяет по-новому подойти к проектированию трубчатых зарядов и открывает возможность определения параметров, от которых существенно зависят физика процесса горения пороха и, следовательно, динамика процесса выстрела.

  3. Волошин А.С., Конюхов А.В., Панкратов Л.С.
    Усредненная модель двухфазных капиллярно-неравновесных течений в среде с двойной пористостью
    Компьютерные исследования и моделирование, 2023, т. 15, № 3, с. 567-580

    Построена математическая модель двухфазных капиллярно-неравновесных изотермических течений несжимаемых фаз в среде с двойной пористостью. Рассматривается среда с двойной пористостью, которая представляет собой композицию двух пористых сред с контрастными капиллярными свойствами (абсолютной проницаемостью, капиллярным давлением). Одна из составляющих сред обладает высокой проницаемостью и является проводящей, вторая характеризуется низкой проницаемостью и образует несвязную систему матричных блоков. Особенностью модели является учет влияния капиллярной неравновесности на массообмен между подсистемами двойной пористости, при этом неравновесные свойства двухфазного течения в составляющих средах описываются в линейном приближении в рамках модели Хассанизаде. Усреднение методом формальных асимптотических разложений приводит к системе дифференциальных уравнений в частных производных, коэффициенты которой зависят от внутренних переменных, определяемых из решения ячеечных задач. Численное решение ячеечных задач для системы уравнений в частных производных является вычислительно затратным. Поэтому для внутреннего параметра, характеризующего распределение фаз между подсистемами двойной пористости, формулируется термодинамически согласованное кинетическое уравнение. Построены динамические относительные фазовые проницаемости и капиллярное давление в процессах дренирования и пропитки. Показано, что капиллярная неравновесность течений в составляющих подсистемах оказывает на них сильное влияние. Таким образом, анализ и моделирование этого фактора является важным в задачах переноса в системах с двойной пористостью.

  4. Предложен алгоритм идентификации параметров плоской вихревой структуры по информации о скорости теченияв конечном (малом) наборе опорных точек. Алгоритм основан на использовании модельной системы точечных вихрей и минимизации в пространстве ее параметров целевого функционала, оценивающего близость модельного и известного наборов векторов скорости. Для численной реализации используются модифицированный метод градиентного спуска с управлением шагом, аппроксимации производных конечными разностями, аналитическое выражение для поля скорости, индуцируемое модельной системой. Проведен численный экспериментальный анализ работы алгоритма на тестовых течениях: одного и системы нескольких точечных вихрей, вихря Рэнкина и диполя Ламба. Используемые дляид ентификации векторы скорости задавались в случайно распределенных наборах опорных точек (от 3 до 200) согласно известным аналитическим выражениям для тестовых полей скорости. В результате вычислений показано: алгоритм сходится к искомому минимуму из широкой области начальных приближений; алгоритм сходится во всех случаях когда опорные точки лежат в областях, где линии тока тестовой и модельной систем топологически эквивалентны; если системы топологически не эквивалентны, то доля удачных расчетов снижается, но сходимость алгоритма также может иметь место; координаты найденных в результате сходимости алгоритма вихрей модельной системы близки к центрам вихрей тестовых конфигураций, а во многих случаях и значения их интенсивностей; сходимость алгоритма в большей степени зависит от расположения, чем от количества используемых при идентификации векторов. Результаты исследования позволяют рекомендовать предложенный алгоритм для анализа плоских вихревых структур, у которых линии тока топологически близки траекториям частиц в поле скорости систем точечных вихрей.

  5. Жихарев Я.М., Черемисин Ф.Г., Клосс Ю.Ю.
    Моделирование разделения смеси газов в многоступенчатом микронасосе, основанное на решении уравнения Больцмана
    Компьютерные исследования и моделирование, 2024, т. 16, № 6, с. 1417-1432

    В работе проводятся моделирование смеси газов в многокаскадном микронасосе и оценка его эффективности при разделении компонентов смеси. Рассматривается устройство в виде протяженного канала с последовательностью поперечно расположенных пластин, различие температур сторон которых приводит к радиометрическому течению газа внутри. Скорость течения газов зависит от их масс, что приводит к разделению смеси. Моделирование основывается на численном решении кинетического уравнения Больцмана, для чего используется схема расщепления, при которой поочередно осуществляются решения уравнений переноса и задач релаксации. Вычисление интеграла столкновений осуществляется с помощью консервативного проекционного метода, при использовании которого строго выполняются законы сохранения массы, импульса и энергии, и важное асимптотическое свойство — равенство интеграла от максвелловской функции нулю. Для решения уравнения переноса используются явная разностная схема первого порядка точности и TVD-схема второго порядка. Расчеты проводятся для смеси неона и аргона в модели твердых сфер с реальным отношением молекулярных диаметров и масс. Разработана программно-моделирующая среда, которая позволяет проводить расчеты как на персональных компьютерах, так и на многопроцессорных кластерах. Использование распараллеливания приводит к ускорению вычислений относительно последовательной версии и постоянству времени одной итерации для устройств разных размеров, что позволило моделировать системы с большим числом пластин. Подобраны геометрические размеры устройства, при которых разделения смеси оказывается наибольшим. Обнаружено, что величина разделения смеси, то есть отношение концентраций на концах устройства линейно зависит от числа каскадов в устройстве, что дает возможность оценить разделение для многокаскадных систем, компьютерное моделирование которых невозможно. Построены изображения и проведен анализ течений и распределений концентраций газов внутри устройства во время его работы. Показано, что устройства такого вида при достаточно большом числе пластин подходят для разделения газовых смесей, притом что они не имеют движущихся частей и, соответственно, достаточно просты в изготовлении и мало подвержены износу.

  6. Черепанов В.В.
    Моделирование теплового поля неподвижных симметричных тел в разреженной низкотемпературной плазме
    Компьютерные исследования и моделирование, 2025, т. 17, № 1, с. 73-91

    В работе исследуется процесс самосогласованной релаксации области возмущений, созданных в разреженной бинарной низкотемпературной плазме неподвижным заряженным шаром или цилиндром с абсорбирующей поверхностью. Особенностью подобных задач является их самосогласованный кинетический характер, при котором нельзя отделить процессы переноса в фазовом пространстве и формирования электромагнитного поля. Представлена математическая модель, позволяющая описывать и анализировать состояние газа, электрическое и тепловое поле в окрестности тела. Многомерность кинетической формулировки создает определенные проблемы при численном решении, поэтому для задачи подобрана криволинейная система неголономных координат, которая минимизирует ее фазовое пространство, что способствует повышению эффективности численных методов. Для таких координат обоснована и проанализирована форма кинетического уравнения Власова. Для его решения использован вариант метода крупных частиц с постоянным форм-фактором. В расчетах применялась подвижная сетка, отслеживающая смещение в фазовом пространстве носителя функции распределения, что дополнительно уменьшило объем контролируемой области фазового пространства. Раскрыты ключевые детали модели и численного метода. Модель и метод реализованы в виде кода на языке Matlab. На примере решения задачи для шара показано наличие в возмущенной зоне существенного неравновесия и анизотропии в распределении частиц по скорости. По результатам расчетов представлены картины эволюции структуры функции распределения частиц, профилей основных макроскопических характеристик газа — концентрации, тока, температуры и теплового потока, характеристик электрического поля в возмущенной области. Установлен механизм разогрева притягивающихся частиц в возмущенной зоне и показаны некоторые важные особенности процесса формирования теплового потока. Получены результаты, хорошо объяснимые с физической точки зрения, что подтверждает адекватность модели и корректность работы программного инструмента. Отмечаются создание и апробация основы для разработки в перспективе инструментов решения и более сложных задач моделирования поведения ионизированных газов вблизи заряженных тел.

    Работа будет полезной специалистам в области математического моделирования, процессов тепло- и массообмена, физики низкотемпературной плазмы, аспирантам и студентам старших курсов, специализирующимся в указанных направлениях.

  7. Клименко А.Б.
    Математическая модель и эвристические методы организации распределенных вычислений в системах интернета вещей
    Компьютерные исследования и моделирование, 2025, т. 17, № 5, с. 851-870

    В настоящее время интенсивное развитие получило направление в рамках теории распределенных вычислений, когда вычислительные задачи решаются распределенно коллективом ресурсно ограниченных устройств. На практике такой сценарий реализуется при обработке данных в системах интернета вещей, когда с целью снижения латентности систем и загруженности сетевой инфраструктуры данные обрабатываются на вычислительных устройствах края сети, в то время как стремительный рост и распространение систем интернета вещей ставят вопрос о необходимости разработки методов снижения ресурсоемкости производимых вычислений. Ресурсная ограниченность вычислительных устройств ставит следующие вопросы распределения вычислительных ресурсов: во-первых, необходимость учета ресурсной стоимости транзита данных между решаемыми на различных устройствах задачах, во-вторых, необходимость учета ресурсной стоимости непосредственно процесса распределения вычислительных ресурсов, что особенно актуально для групп автономных устройств (роботы различных типов, сенсорные сети и др.). Анализ современных публикаций, представленных в открытом доступе, продемонстрировал отсутствие предложенных моделей или методов распределения вычислительных ресурсов, которые бы совместно учитывали перечисленное, что делает создание новой математической модели организации распределенных вычислений в системах интернета вещей и методов ее решения актуальными.

    В данной статье предложены новая математическая модель распределения вычислительных ресурсов и эвристические методы решения получаемой задачи оптимизации, что в комплексе реализует организацию распределенных вычислений в системах интернета вещей. Рассматривается сценарий, когда в группе устройств имеется лидер, который принимает решение о распределении вычислительных ресурсов, в том числе и собственных, для распределенного решения вычислительных задач с наличием информационных обменов. Также предполагается, что отсутствует априорная информация о том, какому устройству назначена роль лидера, и о маршрутах миграции вычислительных задач на устройства.

    Результаты экспериментального исследования продемонстрировали целесообразность использования предложенных моделей и эвристических методов: достигается распределение вычислительных ресурсов со снижением ресурсной стоимости решения вычислительной задачи до 52 % при учете ресурсной стоимости транзита данных, экономия ресурсов до 73 % при дополнении основных критериев оптимизации распределения задач критерием минимизации количества и расстояний миграций подзадач вычислительной задачи (ВЗ), а также снижение ресурсной стоимости решения задачи распределения вычислительных ресурсов до 28 раз со снижением качества полученного распределения до 10 %.

  8. Юдин И.П., Панасик В.А., Перепелкин Е.Е., Питерский А.Н., Полякова Р.В.
    Особенности численного моделирования поля модифицированного магнита спектрометра
    Компьютерные исследования и моделирование, 2015, т. 7, № 1, с. 93-105

    В данной работе представлены результаты численного моделирования распределения магнитного поля некоторых модификаций спектрометрического магнита СП-40, используемого в экспериментальной установке НИС ОИЯИ. Основной особенностью такого магнита является прямоугольная апертура, следовательно, и область, в которой решается краевая задача, имеет всюду гладкую границу, за исключением угловой области ферромагнетика. В таких случаях решение задачи или производные решения могут иметь особенность. Изучено поведение магнитного поля в окрестности угловой области ферромагнетика и численным путем выбрана конфигурация магнита, для которой ширина области однородности (т. е. с $\Delta B/B < 1\,\%$) магнитного поля увеличилась с 0.5 м до 1.0 м, т. е. в два раза.

    Цитирований: 1 (РИНЦ).
  9. Чернавская О.Д.
    Динамическая теория информации как базис естественно-конструктивистского подхода к моделированию мышления
    Компьютерные исследования и моделирование, 2017, т. 9, № 3, с. 433-447

    Рассматриваются основные положения и выводы динамической теории информации (ДТИ). Показано, что ДТИ дает возможность выявить два существенно важных типа информации: объективную (безусловную) и субъективную (условную). Выделяется два способа получения информации: рецепция (восприятие уже существующей информации) и генерация информации (производство новой). Показано, что процессы генерации и рецепции информации должны происходить в двух разных подсистемах одной когнитивной системы. Обсуждаются основные положения естественно-конструктивистского подхода к моделированию мышления. Показано, что любой нейроморфный подход сталкивается с проблемой «провала в описании «Мозга» и «Разума»», т. е. провала между объективно измеримой информации об ансамбле нейронов («Мозг») и субъективной информацией о сознании человека («Разум»). Обсуждается естественно-конструктивистская когнитивная архитектура, разработанная в рамках данного подхода. Она представляет собой сложную блочно-иерархическую комбинацию, собранную из разных нейропро-цессоров. Основная конструктивная особенность этой архитектуры состоит в том, что вся система разделена на две подсистемы (по аналогии с полушариями головного мозга). Одна из подсистем отвечает за восприятие новой информации, обучение и творчество, т. е. за генерацию информации. Другая подсистема отвечает за обработку уже существующей информации, т. е. рецепцию информации. Показано, что низший (нулевой) уровень иерархии представлен процессорами, которые должны записывать образы реальных объектов (распределенная память) как отклик на сенсорные сигналы, что представляет собой объективную информацию (и относится к «Мозгу»). Остальные уровни иерархии представлены процессорами, содержащими символы записанных образов. Показано, что символы представляют собой субъективную (условную) информацию, создаваемую самой системой и обеспечивающую ее индивидуальность. Совокупность высоких уровней иерархии, содержащих символы абстрактных понятий, дает возможность интерпретировать понятия «сознание», «подсознание», «интуиция», относящиеся к области «Разума», в терминах ансамбля нейронов. Таким образом, ДТИ дает возможность построить модель, позволяющую проследить, как на основе «Мозга» возникает «Разум».

    Просмотров за год: 6.
  10. Алёшин И.М., Малыгин И.В.
    Интерпретация результатов радиоволнового просвечивания методами машинного обучения
    Компьютерные исследования и моделирование, 2019, т. 11, № 4, с. 675-684

    В настоящий момент значительно возросла глубина работ по разведке кимберлитовых тел и рудных месторождений. Традиционные геологические методы поиска оказались неэффективными. Практически единственным прямым методом поиска является бурение системы скважин до глубин, которые обеспечивают доступ к вмещающим породам. Из-за высокой стоимости бурения возросла роль межскважинных методов. Они позволяют увеличить среднее расстояние между скважинами без существенного снижения вероятности пропуска кимберлитового или рудного тела. Метод радиоволнового просвечивания особенно эффективен при поиске объектов, отличающихся высокой контрастностью электропроводящих свойств. Физическую основу метода составляет зависимость распространения электромагнитной волны от проводящих свойств среды распространения. Источником и приемником электромагнитного излучения является электрический диполь. При измерениях они размещаются в соседних скважинах. Расстояние между источником и приемником известно. Поэтому, измерив величину уменьшения амплитуды электромагнитной волны при ее распространении между скважинами, можно оценить коэффициент поглощения среды. Породе с низким электрическим сопротивлением соответствует высокое поглощение радиоволн. Поэтому данные межскважинных измерений позволяют оценить эффективное электрическое сопротивление породы. Обычно источник и приемник синхронно погружаются в соседние скважины. Измерение величины амплитуды электрического поля в приемнике позволяет оценить среднее значение коэффициента затухания на линии, соединяющей источник и приемник. Измерения проводятся во время остановок, приблизительно каждые 5 м. Расстояние между остановками значительно меньше расстояния между соседними скважинами. Это приводит к значительной пространственной анизотропии в распределении данных. При проведении разведочного бурения скважины покрывают большую площадь. Наша цель состоит в построении трехмерной модели распределения электрических свойств межскважинного пространства на всем участке по результатом совокупности измерений. Анизотропия пространственного распределения измерений препятствует использованию стандартных методов геостатистики. Для построения трехмерной модели коэффициента затухания мы использовали один из методов теории машинного обучения — метод ближайших соседей. В этом методе коэффициент поглощения в заданной точке определяется его значениями для $k$ ближайших измерений. Число $k$ определяется из дополнительных соображений. Влияния анизотропии пространственного распределения измерений удается избежать, изменив пространственный масштаб в горизонтальном направлении. Масштабный множитель $\lambda$ является еще одним внешним параметром задачи. Для выбора значений параметров $k$ и $\lambda$ мы использовали коэффициент детерминации. Для демонстрации процедуры построения трехмерного образа коэффициента поглощения мы воспользовались данными межскважинного радиоволнового просвечивания, полученные на одном из участков в Якутии.

    Просмотров за год: 3.
Страницы: « первая предыдущая следующая последняя »

Журнал индексируется в Scopus

Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"

Международная Междисциплинарная Конференция МАТЕМАТИКА. КОМПЬЮТЕР. ОБРАЗОВАНИЕ.