Текущий выпуск Номер 5, 2025 Том 17

Все выпуски

Результаты поиска по 'распределение вычислительных ресурсов':
Найдено статей: 32
  1. От редакции
    Компьютерные исследования и моделирование, 2021, т. 13, № 6, с. 1097-1100
  2. От редакции
    Компьютерные исследования и моделирование, 2022, т. 14, № 6, с. 1217-1219
  3. От редакции
    Компьютерные исследования и моделирование, 2023, т. 15, № 6, с. 1415-1418
  4. От редакции
    Компьютерные исследования и моделирование, 2024, т. 16, № 3, с. 581-584
  5. От редакции
    Компьютерные исследования и моделирование, 2024, т. 16, № 6, с. 1341-1343
  6. От редакции
    Компьютерные исследования и моделирование, 2025, т. 17, № 1, с. 5-7
  7. От редакции
    Компьютерные исследования и моделирование, 2025, т. 17, № 5, с. 757-760
  8. Холодов Я.А.
    Разработка сетевых вычислительных моделей для исследования нелинейных волновых процессов на графах
    Компьютерные исследования и моделирование, 2019, т. 11, № 5, с. 777-814

    В различных приложениях возникают задачи, моделируемые уравнениями в частных производных на графах (сетях, деревьях). Для исследования данных проблем и возникающих различных экстремальных ситуаций, для задач проектирования и оптимизации сетей различных типов в данной работе построена вычислительная модель, основанная на решении соответствующих краевых задач для нелинейных уравнений в частных производных гиперболического типа на графах (сетях, деревьях). В качестве приложений были выбраны три различные задачи, решаемые в рамках общего подхода сетевых вычислительных моделей. Первая — это моделирование движения транспортных потоков. При решении данной задачи использовался макроскопический подход, при котором транспортный поток описывается нелинейной системой гиперболических уравнений второго порядка. Проведенные расчеты и полученные результаты показали, что разработанная в рамках предложенного подхода модель хорошо воспроизводит реальную ситуацию на различных участках транспортной сети г. Москвы на значительных временных интервалах, а также может быть использована для выбора наиболее оптимальной стратегии организации дорожного движения в городе. Вторая — моделирование потоков данных в компьютерных сетях. В этой задаче потоки данных различных соединений в пакетной сети передачи данных моделировались в виде несмешивающихся потоков сплошной среды. Предложены концептуальная и математическая модели сети. Проведено численное моделирование в сравнении с системой имитационного моделирования сети NS-2. Полученные результаты показали, что в сравнении с пакетной моделью NS-2 разработанная нами потоковая модель демонстрирует значительную экономию вычислительных ресурсов, обеспечивая при этом хорошую степень подобия, и позволяет моделировать поведение сложных глобально распределенных IP-сетей передачи данных. Третья — моделирование распространения газовых примесей в вентиляционных сетях. Была разработана вычислительная математическая модель распространения мелкодисперсных или газовых примесей в вентиляционных сетях с использованием уравнений газовой динамики путем численного сопряжения областей разной размерности. Проведенные расчеты показали, что модель с хорошей точностью позволяет определять распределение газодинамических параметров в трубопроводной сети и решать задачи динамического управления вентиляцией.

  9. В работе решается двухпараметрическая задача совместного расчета параметров сигнала и шума в условиях распределения Райса методами математической статистики: методом максимума правдоподобия и вариантами метода моментов. Рассматриваемые варианты метода моментов включают в себя совместный расчет сигнала и шума на основе измерений 2-го и 4-го моментов (ММ24) и на основе измерений 1-го и 2-го моментов (ММ12). В рамках каждого из рассматриваемых методов получены в явном виде системы уравнений для искомых параметров сигнала и шума. Важный математический результат проведенного исследования состоит в том, что решение системы двух нелинейных уравнений с двумя неизвестными — искомыми параметрами сигнала и шума — сведено к решению одного уравнения с одной неизвестной, что важно с точки зрения как теоретического исследования метода, так и его практического применения, позволяя существенно сократить необходимые для реализации метода вычислительные ресурсы. Задача является значимой для целей обработки райсовских данных, в частности, в системах магнитно-резонансной визуализации. В результате проведенного теоретического анализа получен важный практический вывод: решение двухпараметрической задачи не приводит к увеличению требуемых вычислительных ресурсов по сравнению с однопараметрическим приближением. Теоретические выводы подтверждаются результатами численного эксперимента.

    Просмотров за год: 2. Цитирований: 2 (РИНЦ).
  10. Ильин В.Д.
    Ситуационное распределение ресурсов: обзор технологий решения задач на основе систем знаний
    Компьютерные исследования и моделирование, 2025, т. 17, № 4, с. 543-566

    В обзоре представлены обновленные технологии решения двух классов линейных задач распределения ресурсов при динамично изменяющихся характеристиках систем ситуационного управления и информированности экспертов (и/или обучаемых роботов), решающих задачи. Поиск решений выполняется в интерактивном режиме вычислительного эксперимента с использованием обновляемых систем знаний о задачах, рассматриваемых как конструктивные объекты (в соответствии с методологией формализации знаний о программируемых задачах, созданной в теории S-символов). Технологии ориентированы на реализацию в виде интернет-сервисов. К первому классу отнесены задачи распределения ресурсов, решаемые методом целевого перемещения решения. Ко второму — задачи распределения одного ресурса в иерархических системах с учетом приоритетов расходных статьей, решаемые (в зависимости от заданных обязательных и ориентирующих требований к решению) или методом интервального распределения (при этом входные данные и результат представлены числовыми сегментами), или методом целевого перемещения решения. Постановки задач определяются требованиями к решениям и спецификацией их применимости, которые задает эксперт на основе результатов анализа портретов целевой и достигнутой ситуации. В отличие от известных методов решения задач распределения ресурсов как задач линейного программирования метод целевого перемещения решения нечувствителен к малым изменениям данных и позволяет находить наилучшие приближения к реализуемым решениям при несовместности системы ограничений. В технологиях распределения одного ресурса сегментное представление данных и результатов позволяет более адекватно (по сравнению с точечным представлением) отражать состояние ресурсного пространства системы и повышает практическую применимость решений. Обсуждаемые в статье технологии программно реализованы и применялись для решения задач ресурсного обоснования решений, бюджетного проектирования с учетом приоритетов расходных статей и др. Технология распределения одного ресурса реализована в виде действующего интернет-сервиса планирования расходов. Методологическая состоятельность технологий подтверждена результатами сравнения с известными технологиями решения рассматриваемых задач.

Страницы: предыдущая следующая последняя »

Журнал индексируется в Scopus

Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"

Международная Междисциплинарная Конференция МАТЕМАТИКА. КОМПЬЮТЕР. ОБРАЗОВАНИЕ.