Текущий выпуск Номер 6, 2025 Том 17

Все выпуски

Результаты поиска по 'продукция':
Найдено статей: 18
  1. Варшавский Л.Е.
    Техника проведения расчетов динамики показателей олигополистических рынков на основе операционного исчисления
    Компьютерные исследования и моделирование, 2019, т. 11, № 5, с. 949-963

    В настоящее время наиболее распространенный подход к расчету оптимальных по Нэшу–Курно стратегий участников олигополистических рынков, а следовательно и показателей таких рынков, связан с использованием линейных динамических игр с квадратичными критериями и решением обобщенных матричных уравнений Риккати.

    Другой подход к исследованию оптимальных разомкнутых (open-loop) стратегий участников олигополистических рынков, развиваемый автором, основан на использовании операционного исчисления (в частности, Z-преобразования). Этот подход позволяет получить экономически приемлемые решения для более широкого диапазона изменения параметров используемых моделей, чем при применении методов, основанных на решении обобщенных матричных уравнений Риккати. Метод отличается относительной простотой вычислений и необходимой для экономического анализа наглядностью. Одним из его достоинств является то, что во многих важных для экономической практики случаях он, в отличие от традиционного подхода, обеспечивает возможность проведения расчетов с использованием широко распространенных электронных таблиц, что позволяет проводить исследование перспектив развития олигополистических рынков широкому кругу специалистов и потребителей.

    В статье рассматриваются практические аспекты определения оптимальных по Нэшу–Курно стратегий участников олигополистических рынков на основе операционного исчисления, в частности техника проведения расчетов оптимальных по Нэшу–Курно стратегий в среде Excel. В качестве иллюстрации возможностей предлагаемых методов расчета исследуются примеры, близкие к практическим задачам прогнозирования показателей рынков высокотехнологичной продукции.

    Полученные автором для многочисленных примеров и реальных экономических систем результаты расчетов, как с использованием полученных соотношений на основе электронных таблиц, так и с использованием расширенных уравнений Риккати, оказываются весьма близкими. В большинстве рассмотренных практических задач отклонение рассчитанных в соответствии с двумя подходами показателей, как правило, не превышает 1.5–2 %. Наибольшая величина относительных отклонений (до 3–5 %) наблюдается в начале периода прогнозирования. В типичных случаях период сравнительно заметных отклонений составляет 3–5 моментов времени. После переходного периода наблюдается практически полное совпадение значений искомых показателей при использовании обоих подходов.

  2. В работе предложена простая нелинейная модель, позволяющая рассчитать суточные и месячные значения валовой (GPP) и нетто (NPP) первичной продукции лесов по параметрам, характеризующим эффективность использования растениями ФАР на GPP и NPP, а также по интегральной величине поглощенной растительностью фотосинтетически активной радиации ФАР, определяемой в ходе измерений, в том числе средствами дистанционного зондирования. Необходимые для построения модели значения GPP и NPP определялись по данным измерений потоков СО2 в еловых и влажных тропических лесах с применением процесс-ориентированной модели Mixfor-SVAT.

    Просмотров за год: 1. Цитирований: 2 (РИНЦ).
  3. Варшавский Л.Е.
    Моделирование влияния санкций и импортозамещения на показатели рынка
    Компьютерные исследования и моделирование, 2025, т. 17, № 2, с. 365-380

    В статье рассматривается подход к моделированию влияния санкций и импортозамещения на показатели рынков высокотехнологичной продукции, основанный на использовании методов теории управления, в частности операционного исчисления, z-преобразования. В рассматриваемой модели предполагается, что компания-производитель оборудования поставляет уникальное высокотехнологичное оборудование в компанию-производитель высокотехнологичной продукции (ВП), которая доминирует на рынке потребителей оборудования. Компания – производитель ВП, опасаясь нарушения поставок оборудования из-за введения всевозможных ограничений и санкций, за счет отчислений от своей прибыли инвестирует в развитие импортозамещающего производства оборудования в третьей компании, которое может также найти применение на внешнем рынке.

    Анализируется влияние на показатели условного рынка следующих факторов и действий: 1) степени инерционности процессов разработки и развития производства в компании; 2) доли оборудования импортозамещающей компании, поставляемого в компанию – производитель ВП; 3) санкций (общих и выборочных) на поставку оборудования в компанию – производитель ВП, а также блокирования процесса импортозамещения в третьей компании со стороны первой компании.

    Проведенные расчеты показывают, что ускорение процессов разработки и производства оборудования приводит к более быстрому снижению объемов производства первой компании. При этом наблюдается рост цены, что связано с изменением параметров обратной функции спроса. Увеличение доли оборудования импортозамещающей компании, потребляемой второй компанией, может приводить к резкому росту объемов производства во второй и третьей компаниях, стабилизации объемов производства в первой компании и к росту цены.

    Введение санкций приводит к уменьшению относительно базового варианта объемов производства и доходов всех компаний. Происходит также существенное изменение цены. Однако в связи с инерционностью процессов производства оборудования в рассматриваемом примере существенное изменение объемов производства в совокупности компаний происходит со значительным лагом. Особенно это характерно для третьей компании, в которой заметное отклонение от базового варианта начинается после 20 лет.

    Блокировка первой компанией – производителем оборудования, инвестиций в развитие импортозамещения в третьей компании обеспечивает сравнительно небольшой выигрыш первой компании в объемах производства и NPV, хотя и позволяет ей существенно повысить рыночную долю относительно базового варианта.

  4. Вавилова Д.Д., Кетова К.В., Зерари Р.
    Компьютерное моделирование динамики валового регионального продукта: сравнительный анализ нейросетевых моделей
    Компьютерные исследования и моделирование, 2025, т. 17, № 6, с. 1219-1236

    Анализ экономических показателей региона играет важную роль в управлении и планировании развития, при этом валовой региональный продукт (ВРП) является одним из ключевых индикаторов экономической деятельности. Применение искусственного интеллекта, в том числе нейросетевых технологий, позволяет значительно повысить точность и надежность прогнозов экономических процессов. В данном исследовании сравниваются три модели нейросетевых алгоритмов для прогнозирования ВРП одного из типичных регионов РФ — Удмуртской Республики — на основе временных рядов за период с 2000 по 2023 год. В качестве моделей выбраны нейронная сеть с алгоритмом летучей мыши (BA-LSTM), модель нейронной сети обратного распространения ошибки, оптимизированная с помощью генетического алгоритма (GA-BPNN), и нейросетевая модель Элмана, оптимизированная алгоритмом роя частиц (PSO-Elman). В ходе исследования были выполнены такие этапы нейросетевого моделирования, как подготовка исходных данных, обучение моделей и их сравнительный анализ по показателям точности и качества прогнозов. Такой подход позволяет оценить преимущества и недостатки каждой модели в контексте прогнозирования ВРП, а также определить наиболее перспективные направления для дальнейших исследований. Использование современных нейросетевых методов открывает новые возможности для автоматизации анализа региональной экономики и повышения качества прогнозных оценок, что особенно актуально при ограниченных данных и для оперативного принятия решений. В исследовании в качестве входных данных для прогнозирования ВРП используются такие факторы, как величина производственного капитала, среднегодовая численность трудовых ресурсов, доля продукции высокотехнологичных и наукоемких отраслей в ВРП, а также показатель, учитывающий инфляцию. Высокая точность прогнозов, достигнутая в результате включения этих факторов в нейросетевые модели, подтверждает наличие сильной связи между этими факторами и ВРП. Результаты исследования показали высокую точность нейросетевой модели BA-LSTM на валидационной выборке: коэффициент детерминации составил 0,82, средняя абсолютная процентная ошибка — 4,19%. Качество и надежность этой модели свидетельствуют о ее способности эффективно предсказы- вать динамику ВРП. В прогнозном периоде до 2030 года в Удмуртской Республике ожидается ежегодное увеличение ВРП +4,6% в текущих ценах или +2,5% в сопоставимых ценах 2023 года. К 2030 году прогнозируется ВРП на уровне 1264,5 млрд руб.

  5. Варшавский Л.Е.
    Итерационные методы декомпозиции при моделировании развития олигополистических рынков
    Компьютерные исследования и моделирование, 2025, т. 17, № 6, с. 1237-1256

    Один из принципов формирования рыночной конкурентной среды состоит в создании условий для реализации экономическими агентами стратегий, оптимальных по Нэшу – Курно. При стандартном подходе к определению рыночных стратегий, оптимальных по Нэшу – Курно, экономические агенты должны обладать полной информацией о показателях и динамических характеристиках всех участников рынка. Что не соответствует действительности.

    В связи с этим для отыскания оптимальных по Нэшу – Курно решений в динамических моделях необходимо наличие координатора, обладающего полной информацией об участниках. Однако в случае большого числа участников игры, даже при наличии у координатора необходимой информации, появляются вычислительные трудности, связанные с необходимостью решения большого числа связанных (coupled) уравнений (в случае линейных динамических игр с квадратическим критерием — матричных уравнений Риккати).

    В связи с этим возникает необходимость в декомпозиции общей задачи определения оптимальных стратегий участников рынка на частные (локальные) задачи. Применительно к линейным динамическим играм с квадратическим критерием исследовались подходы, основанные на итерационной декомпозиции связанных матричных уравнений Риккати и решении локальных уравнений Риккати. В настоящей статье рассматривается более простой подход к итерационному определению равновесия по Нэшу – Курно в олигополии путем декомпозиции с использованием операционного исчисления (операторного метода).

    Предлагаемый подход основан на следующей процедуре. Виртуальный координатор, обладающий информацией о параметрах обратной функции спроса, формирует цены на перспективный период. Олигополисты при заданной фиксированной динамике цен определяют свои стратегии в соответствии с несколько измененным критерием оптимальности. Оптимальные объемы продукции олигополистов поступают к координатору, который на основе итерационного алгоритма корректирует динамику цены на предыдущем шаге.

    Предлагаемая процедура иллюстрируется на примере статической и динамической моделей рационального поведения участников олигополии, которые максимизируют чистую текущую стоимость (NPV).

    При использовании методов операционного исчисления (и, в частности, обратного Z-преобразования) найдены условия, при которых итерационная процедура приводит к равновесным уровням цены и объемов производства в случае линейных динамических игр как с квадратичными, так и с нелинейными (вогнутыми) критериями оптимизации.

    Рассмотренный подход использован применительно к примерам дуополии, триополии, дуополии на рынке с дифференцированным продуктом, дуополии с взаимодействующими олигополистами при линейной обратной функции спроса. Сопоставление результатов расчетов динамики цены и объемов производства олигополистов для рассмотренных примеров на основе связанных (coupled) уравнений матричных уравнений Риккати в Matlab, а также в соответствии с предложенным итерационным методом в широко доступной системе Excel показывает их практическую идентичность.

    Кроме того, применение предложенной итерационной процедуры проиллюстрировано на примере дуополии с нелинейной функцией спроса.

  6. Варшавский L.Е.
    Исследование динамики структуры олигополистических рынков при нерыночных противодействиях сторон
    Компьютерные исследования и моделирование, 2021, т. 13, № 1, с. 219-233

    В статье исследуется влияние нерыночных действий участников олигополистических рынков на рыночную структуру. Анализируются следующие действия одного из участников рынка, направленные на повышение его рыночной доли: 1) манипуляция ценами; 2) блокировка инвестиций более сильных олигополистов; 3) уничтожение производственной продукции и мощностей конкурентов. Для моделирования стратегий олигополистов используются линейные динамические игры с квадратичным критерием. Целесообразность их использования обусловлена возможностью как адекватного описания эволюции рынков, так и реализации двух взаимно дополняющих подходов к определению стратегий олигополистов: 1) подхода, основанного на представлении моделей в пространстве состояний и решении обобщенных уравнений Риккати; 2) подхода, основанного на применении методов операционного исчисления (в частотной области) и обладающего необходимой для экономического анализа наглядностью.

    В статье показывается эквивалентность подходов к решению задачи с максиминными критериями олигополистов в пространстве состояний и в частотной области. Рассматриваются результаты расчетов применительно к дуополии, с показателями, близкими к одной из дуополий в микроэлектронной промышленности мира. Второй дуополист является менее эффективным с позиций затрат, хотя и менее инерционным. Его цель состоит в повышении своей рыночной доли путем реализации перечисленных выше нерыночных методов.

    На основе расчетов по игровой модели построены зависимости, характеризующие связь относи- тельного увеличения объемов производства за 25-летний период слабого $dy_2$ и сильного $dy_1$ дуополистов при манипуляции ценами. Показано, что увеличение цены при принятой линейной функции спроса приводит к весьма незначительному росту производства сильного дуополиста, но вместе с тем — к существенному росту этого показателя у слабого.

    В то же время блокировка инвестиций, а также уничтожение продукции сильного дуополиста приводят к росту объемов производства товарной продукции у слабого дуополиста за счет снижения этого показателя у сильного, причем эластичность $\frac{y_2}{dy_1}$ превышает по модулю 1.

  7. Разработана динамическая макромодельмиров ой динамики. В модели мир разбит на 19 регионов по географическому принципу согласно классификации Организации объединенных наций. Внутреннее развитие регионов описывается уравнениями разностного типа для демографических и экономических индикаторов, таких как численностьнас еления, валовой продукт, валовое накопление. Межрегиональные взаимодействия представляют собой агрегированные торговые потоки от региона к региону и описываются регрессионными уравнениями. В качестве регрессоров использовались время, валовой продукт экспортера и валовой продукт импортера. Рассматривалосьчеты ре типа: временная парная регрессия — зависимость торгового потока от времени, экспортная функция — зависимостьд оли торгового потока в валовом продукте экспортера от валового продукта импортера, импортная функция — зависимостьд оли торгового потока в валовой продукции импортера от валового продукта экспортера, множественная регрессия — зависимостьт оргового потока от валовых продуктов экспортера и импортера. Для каждого типа применялосьд ва вида функциональной зависимости: линейная и логарифмически-линейная, всего исследовано восемьв ариантов торгового уравнения. Проведено сравнение качества регрессионных моделей по коэффициенту детерминации. Расчеты показывают, что модель удовлетворительно аппроксимирует динамику монотонно меняющихся показателей. Проанализирована динамика немонотонных торговых потоков, для их аппроксимации предложено три вида функциональной зависимости от времени. Показано, что с 10%-й погрешностью множество внешнеторговых рядов может бытьприб лижено пространством семи главных компонент. Построен прогноз автономного развития регионов и глобальной динамики до 2040 года.

  8. Ильясов Д.В., Молчанов А.Г., Глаголев М.В., Суворов Г.Г., Сирин А.А.
    Моделирование нетто-экосистемного обмена диоксида углерода сенокоса на осушенной торфяной почве: анализ сценариев использования
    Компьютерные исследования и моделирование, 2020, т. 12, № 6, с. 1427-1449

    Нетто-экосистемный обмен (NEE) — ключевой компонент углеродного баланса, характеризующий экосистему как источник или сток углерода. В работе интерпретируются данные натурных измерений NEE и составляющих его компонентов (дыхания почвы — Rsoil, экосистемы — Reco и валового газообмена — GEE) сенокоса и залежи методами математического моделирования. Измерения проводились в ходе пяти полевых кампаний 2018 и 2019 гг. на осушенной части Дубненского болотного массива в Талдомском районе Московской области. После осушения для добычи торфа остаточная торфяная залежь (1–1.5 м) была распахана и впоследствии залужена под сенокосы. Измерение потоков CO2 проводили с помощью динамических камер: при ненарушенной растительности измеряли NEE и Reco, а при ее удалении — Rsoil. Для моделирования потоков CO2 была использована их связь с температурой почвы и воздуха, уровнем почвенно-грунтовых вод, фотосинтетически активной радиацией, подземной и надземной фитомассой растений. Параметризация моделей проведена с учетом устойчивости коэффициентов, оцененной методом статистического моделирования (бутстрэпа). Проведены численные эксперименты по оценке влияния различных режимов использования сенокоса на NEE. Установлено, что общий за сезон (с 15 мая по 30 сентября) NEE значимо не отличался на сенокосе без кошения (К0) и залежи, составив соответственно 4.5±1.0 и 6.2±1.4 тС·га–1·сезон–1. Таким образом, оба объекта являются источником диоксида углерода в атмосферу. Однократное в сезон кошение сенокоса (К1) приводит к росту NEE до 6.5±0.9, а двукратное (К2) — до 7.5±1.4 тС·га–1·сезон–1. Как при К1, так и при К2 потери углерода незначительно увели- чиваются в сравнении с К0 и оказываются близкими в сравнении с залежью. При этом накопленный растениями углерод частично переводится при кошении в сельскохозяйственную продукцию (величина скошенной фитомассы для К1 и К2 составляет 0.8±0.1 и 1.4±0.1 тС·га–1·сезон–1), в то время как на залежи его значительная часть возвращается в атмосферу при отмирании и последующем разложении растений.

Страницы: предыдущая

Журнал индексируется в Scopus

Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"

Международная Междисциплинарная Конференция МАТЕМАТИКА. КОМПЬЮТЕР. ОБРАЗОВАНИЕ.