Текущий выпуск Номер 2, 2025 Том 17

Все выпуски

Результаты поиска по 'продукция':
Найдено статей: 15
  1. В работе предложена простая нелинейная модель, позволяющая рассчитать суточные и месячные значения валовой (GPP) и нетто (NPP) первичной продукции лесов по параметрам, характеризующим эффективность использования растениями ФАР на GPP и NPP, а также по интегральной величине поглощенной растительностью фотосинтетически активной радиации ФАР, определяемой в ходе измерений, в том числе средствами дистанционного зондирования. Необходимые для построения модели значения GPP и NPP определялись по данным измерений потоков СО2 в еловых и влажных тропических лесах с применением процесс-ориентированной модели Mixfor-SVAT.

    Просмотров за год: 1. Цитирований: 2 (РИНЦ).
  2. Варшавский Л.Е.
    Моделирование влияния санкций и импортозамещения на показатели рынка
    Компьютерные исследования и моделирование, 2025, т. 17, № 2, с. 365-380

    В статье рассматривается подход к моделированию влияния санкций и импортозамещения на показатели рынков высокотехнологичной продукции, основанный на использовании методов теории управления, в частности операционного исчисления, z-преобразования. В рассматриваемой модели предполагается, что компания-производитель оборудования поставляет уникальное высокотехнологичное оборудование в компанию-производитель высокотехнологичной продукции (ВП), которая доминирует на рынке потребителей оборудования. Компания – производитель ВП, опасаясь нарушения поставок оборудования из-за введения всевозможных ограничений и санкций, за счет отчислений от своей прибыли инвестирует в развитие импортозамещающего производства оборудования в третьей компании, которое может также найти применение на внешнем рынке.

    Анализируется влияние на показатели условного рынка следующих факторов и действий: 1) степени инерционности процессов разработки и развития производства в компании; 2) доли оборудования импортозамещающей компании, поставляемого в компанию – производитель ВП; 3) санкций (общих и выборочных) на поставку оборудования в компанию – производитель ВП, а также блокирования процесса импортозамещения в третьей компании со стороны первой компании.

    Проведенные расчеты показывают, что ускорение процессов разработки и производства оборудования приводит к более быстрому снижению объемов производства первой компании. При этом наблюдается рост цены, что связано с изменением параметров обратной функции спроса. Увеличение доли оборудования импортозамещающей компании, потребляемой второй компанией, может приводить к резкому росту объемов производства во второй и третьей компаниях, стабилизации объемов производства в первой компании и к росту цены.

    Введение санкций приводит к уменьшению относительно базового варианта объемов производства и доходов всех компаний. Происходит также существенное изменение цены. Однако в связи с инерционностью процессов производства оборудования в рассматриваемом примере существенное изменение объемов производства в совокупности компаний происходит со значительным лагом. Особенно это характерно для третьей компании, в которой заметное отклонение от базового варианта начинается после 20 лет.

    Блокировка первой компанией – производителем оборудования, инвестиций в развитие импортозамещения в третьей компании обеспечивает сравнительно небольшой выигрыш первой компании в объемах производства и NPV, хотя и позволяет ей существенно повысить рыночную долю относительно базового варианта.

  3. Варшавский L.Е.
    Исследование динамики структуры олигополистических рынков при нерыночных противодействиях сторон
    Компьютерные исследования и моделирование, 2021, т. 13, № 1, с. 219-233

    В статье исследуется влияние нерыночных действий участников олигополистических рынков на рыночную структуру. Анализируются следующие действия одного из участников рынка, направленные на повышение его рыночной доли: 1) манипуляция ценами; 2) блокировка инвестиций более сильных олигополистов; 3) уничтожение производственной продукции и мощностей конкурентов. Для моделирования стратегий олигополистов используются линейные динамические игры с квадратичным критерием. Целесообразность их использования обусловлена возможностью как адекватного описания эволюции рынков, так и реализации двух взаимно дополняющих подходов к определению стратегий олигополистов: 1) подхода, основанного на представлении моделей в пространстве состояний и решении обобщенных уравнений Риккати; 2) подхода, основанного на применении методов операционного исчисления (в частотной области) и обладающего необходимой для экономического анализа наглядностью.

    В статье показывается эквивалентность подходов к решению задачи с максиминными критериями олигополистов в пространстве состояний и в частотной области. Рассматриваются результаты расчетов применительно к дуополии, с показателями, близкими к одной из дуополий в микроэлектронной промышленности мира. Второй дуополист является менее эффективным с позиций затрат, хотя и менее инерционным. Его цель состоит в повышении своей рыночной доли путем реализации перечисленных выше нерыночных методов.

    На основе расчетов по игровой модели построены зависимости, характеризующие связь относи- тельного увеличения объемов производства за 25-летний период слабого $dy_2$ и сильного $dy_1$ дуополистов при манипуляции ценами. Показано, что увеличение цены при принятой линейной функции спроса приводит к весьма незначительному росту производства сильного дуополиста, но вместе с тем — к существенному росту этого показателя у слабого.

    В то же время блокировка инвестиций, а также уничтожение продукции сильного дуополиста приводят к росту объемов производства товарной продукции у слабого дуополиста за счет снижения этого показателя у сильного, причем эластичность $\frac{y_2}{dy_1}$ превышает по модулю 1.

  4. Разработана динамическая макромодельмиров ой динамики. В модели мир разбит на 19 регионов по географическому принципу согласно классификации Организации объединенных наций. Внутреннее развитие регионов описывается уравнениями разностного типа для демографических и экономических индикаторов, таких как численностьнас еления, валовой продукт, валовое накопление. Межрегиональные взаимодействия представляют собой агрегированные торговые потоки от региона к региону и описываются регрессионными уравнениями. В качестве регрессоров использовались время, валовой продукт экспортера и валовой продукт импортера. Рассматривалосьчеты ре типа: временная парная регрессия — зависимость торгового потока от времени, экспортная функция — зависимостьд оли торгового потока в валовом продукте экспортера от валового продукта импортера, импортная функция — зависимостьд оли торгового потока в валовой продукции импортера от валового продукта экспортера, множественная регрессия — зависимостьт оргового потока от валовых продуктов экспортера и импортера. Для каждого типа применялосьд ва вида функциональной зависимости: линейная и логарифмически-линейная, всего исследовано восемьв ариантов торгового уравнения. Проведено сравнение качества регрессионных моделей по коэффициенту детерминации. Расчеты показывают, что модель удовлетворительно аппроксимирует динамику монотонно меняющихся показателей. Проанализирована динамика немонотонных торговых потоков, для их аппроксимации предложено три вида функциональной зависимости от времени. Показано, что с 10%-й погрешностью множество внешнеторговых рядов может бытьприб лижено пространством семи главных компонент. Построен прогноз автономного развития регионов и глобальной динамики до 2040 года.

  5. Ильясов Д.В., Молчанов А.Г., Глаголев М.В., Суворов Г.Г., Сирин А.А.
    Моделирование нетто-экосистемного обмена диоксида углерода сенокоса на осушенной торфяной почве: анализ сценариев использования
    Компьютерные исследования и моделирование, 2020, т. 12, № 6, с. 1427-1449

    Нетто-экосистемный обмен (NEE) — ключевой компонент углеродного баланса, характеризующий экосистему как источник или сток углерода. В работе интерпретируются данные натурных измерений NEE и составляющих его компонентов (дыхания почвы — Rsoil, экосистемы — Reco и валового газообмена — GEE) сенокоса и залежи методами математического моделирования. Измерения проводились в ходе пяти полевых кампаний 2018 и 2019 гг. на осушенной части Дубненского болотного массива в Талдомском районе Московской области. После осушения для добычи торфа остаточная торфяная залежь (1–1.5 м) была распахана и впоследствии залужена под сенокосы. Измерение потоков CO2 проводили с помощью динамических камер: при ненарушенной растительности измеряли NEE и Reco, а при ее удалении — Rsoil. Для моделирования потоков CO2 была использована их связь с температурой почвы и воздуха, уровнем почвенно-грунтовых вод, фотосинтетически активной радиацией, подземной и надземной фитомассой растений. Параметризация моделей проведена с учетом устойчивости коэффициентов, оцененной методом статистического моделирования (бутстрэпа). Проведены численные эксперименты по оценке влияния различных режимов использования сенокоса на NEE. Установлено, что общий за сезон (с 15 мая по 30 сентября) NEE значимо не отличался на сенокосе без кошения (К0) и залежи, составив соответственно 4.5±1.0 и 6.2±1.4 тС·га–1·сезон–1. Таким образом, оба объекта являются источником диоксида углерода в атмосферу. Однократное в сезон кошение сенокоса (К1) приводит к росту NEE до 6.5±0.9, а двукратное (К2) — до 7.5±1.4 тС·га–1·сезон–1. Как при К1, так и при К2 потери углерода незначительно увели- чиваются в сравнении с К0 и оказываются близкими в сравнении с залежью. При этом накопленный растениями углерод частично переводится при кошении в сельскохозяйственную продукцию (величина скошенной фитомассы для К1 и К2 составляет 0.8±0.1 и 1.4±0.1 тС·га–1·сезон–1), в то время как на залежи его значительная часть возвращается в атмосферу при отмирании и последующем разложении растений.

Страницы: предыдущая

Журнал индексируется в Scopus

Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"

Международная Междисциплинарная Конференция МАТЕМАТИКА. КОМПЬЮТЕР. ОБРАЗОВАНИЕ.