Текущий выпуск Номер 4, 2025 Том 17

Все выпуски

Результаты поиска по 'оценка':
Найдено статей: 299
  1. Степин Ю.П., Леонов Д.Г., Папилина Т.М., Степанкина О.А.
    Системное моделирование, оценка и оптимизация рисков функционирования распределенных компьютерных систем
    Компьютерные исследования и моделирование, 2020, т. 12, № 6, с. 1349-1359

    В статье рассматривается проблема надежности эксплуатации открытой интеграционной платформы, обеспечивающей взаимодействие различных программных комплексов моделирования режимов транспорта газа, с учетом предоставления доступа к ним, в том числе через тонких клиентов, по принципу «программное обеспечение как услуга». Математически описаны функционирование, надежность хранения, передачи информации и реализуемость вычислительного процесса системы, что является необходимым для обеспечения работы автоматизированной системы диспетчерского управления транспортом нефти и газа. Представлено системное решение вопросов моделирования работы интеграционной платформы и тонких клиентов в условиях неопределенности и риска на базе метода динамики средних теории марковских случайных процессов. Рассматривается стадия стабильной работы — стационарный режим работы цепи Маркова с непрерывным временем и дискретными состояниями, которая описывается системами линейных алгебраический уравнений Колмогорова–Чепмена, записанных относительно средних численностей (математических ожиданий) состояний объектов исследования. Объектами исследования являются как элементы системы, присутствующие в большом количестве (тонкие клиенты и вычислительные модули), так и единичные (сервер, сетевой менеджер (брокер сообщений), менеджер технологических схем). В совокупности они представляют собой взаимодействующие Марковские случайные процессы, взаимодействие которых определяется тем, что интенсивности переходов в одной группе элементов зависят от средних численностей других групп элементов.

    Через средние численности состояний объектов и интенсивностей их переходов из состояния в состояние предлагается многокритериальная дисперсионная модель оценки риска (как в широком, так и узком смысле, в соответствии со стандартом МЭК). Риск реализации каждого состояния параметров системы вычисляется как среднеквадратическое отклонение оцениваемого параметра системы объектов (в данном случае — средние численности и вероятности состояний элементов открытой интеграционной платформы и облака) от их среднего значения. На основании определенной дисперсионной модели риска функционирования элементов системы вводятся модели критериев оптимальности и рисков функционирования системы в целом. В частности, для тонкого клиента рассчитываются риск недополучения выгоды от подготовки и обработки запроса, суммарный риск потерь, связанный только с непроизводительными состояниями элемента, суммарный риск всех потерь от всех состояний системы. Для полученной многокритериальной задачи оценки рисков предлагаются модели (схемы компромисса) выбора оптимальной стратегии эксплуатации.

  2. Минниханов Р.Н., Аникин И.В., Дагаева М.В., Файзрахманов Э.М., Большаков Т.Е.
    Транспортные данные для моделирования эффективной транспортной среды в Республике Татарстан
    Компьютерные исследования и моделирование, 2021, т. 13, № 2, с. 395-404

    Автоматизированные системы мониторинга городского трафика широко используются для решения различных задач в интеллектуальных транспортных системах различных регионов. Такие системы включают комплексы фотовидеофиксации, видеонаблюдения, управления дорожным трафиком и т. д. Для эффективного управления транспортным потоком и своевременного реагирования на дорожные инциденты необходимы непрерывный сбор и анализ потока информации, поступающей с данных комплексов, формирование прогнозных значений для дальнейшего выявления аномалий. При этом для повышения качества прогноза требуется агрегирование данных, поступающих из различных источников. Это позволяет уменьшить ошибку прогноза, связанную с ошибками и пропусками в исходных данных. В данной статье реализован подход к краткосрочному и среднесрочному прогнозированию транспортных потоков (5, 10, 15 минут) на основе агрегирования данных, поступающих от комплексов фотовидеофиксации и систем видеонаблюдения. Реализован прогноз с использованием различных архитектур рекуррентных нейронных сетей: LSTM, GRU, двунаправленной LSTM с одним и двумя слоями. Работа двунаправленной LSTM исследовалась для 64 и 128 нейронов в каждом слое. Исследовалась ошибка прогноза для различных размеров входного окна (1, 4, 12, 24, 48). Для оценки прогнозной ошибки использована метрика RMSE. В ходе проведенных исследований получено, что наименьшая ошибка прогноза (0.032405) достигается при использовании однослойной рекуррентной нейронной сети LSTM с 64 нейронами и размером входного окна, равном 24.

  3. В работе выделены два значимых геометрических параметра, влияющих на интерполяцию физических величин, в методе гидродинамики сглаженных частиц (SPH). Это коэффициент сглаживания, связывающий размер частицы с величиной радиуса сглаживания, и коэффициент объема, позволяющий корректно определять массу частицы при заданном распределении частиц в среде.

    Предложена методика оценки влияния означенных параметров на точность интерполяций в методе SPH при решении гидростатической задачи. Для оценки точности численного решения вводятся аналитические функции относительной погрешности восстановления плотности и градиента давления в среде. Функции погрешности зависят от коэффициента сглаживания и коэффициента объема. Выбор конкретной интерполяции метода SPH позволяет преобразовать дифференциальную форму функций погрешности к форме алгебраического полинома. Корни такого полинома дают значения коэффициента сглаживания, обеспечивающие минимальную погрешность соответствующей интерполяции при заданном коэффициенте объема.

    В работе осуществлены вывод и анализф ункций относительных погрешностей плотности и градиента давления на выборке популярных ядер с различными радиусами сглаживания. Установлено, что для всех рассмотренных ядер не существует общего значения коэффициента сглаживания, обеспечивающего минимальную погрешность обеих SPH-интерполяций. Выделены представители ядер с различными радиусами сглаживания, позволяющие обеспечить наименьшие погрешности SPH-интерполяций при решении гидростатической задачи. Также определены некоторые ядра, не позволяющие обеспечить корректное интерполирование при решении гидростатической задачи методом SPH.

  4. Двуреченский П.Е.
    Градиентный метод с неточным оракулом для задач композитной невыпуклой оптимизации
    Компьютерные исследования и моделирование, 2022, т. 14, № 2, с. 321-334

    В этой статье мы предлагаем новый метод первого порядка для композитных невыпуклых задач минимизации с простыми ограничениями и неточным оракулом. Целевая функция задается как сумма «сложной», возможно, невыпуклой части с неточным оракулом и «простой» выпуклой части. Мы обобщаем понятие неточного оракула для выпуклых функций на случай невыпуклых функций. Неформально говоря, неточность оракула означает, что для «сложной» части в любой точке можно приближенно вычислить значение функции и построить квадратичную функцию, которая приближенно ограничивает эту функцию сверху. Рассматривается два возможных типа ошибки: контролируемая, которая может быть сде- лана сколь угодно маленькой, например, за счет решения вспомогательной задачи, и неконтролируемая. Примерами такой неточности являются: гладкие невыпуклые функции с неточным и непрерывным по Гёльдеру градиентом, функции, заданные вспомогательной равномерно вогнутой задачей максимизации, которая может быть решена лишь приближенно. Для введенного класса задачм ы предлагаем метод типа проекции градиента / зеркального спуска, который позволяет использовать различные прокс-функции для задания неевклидовой проекции на допустимое множество и более гибкой адаптации к геометрии допустимого множества; адаптивно выбирает контролируемую ошибку оракула и ошибку неевклидового проектирования; допускает неточное проксимальное отображение с двумя типами ошибки: контролируемой и неконтролируемой. Мы доказываем скорость сходимости нашего метода в терминах нормы обобщенного градиентного отображения и показываем, что в случае неточного непрерывного по Гёльдеру градиента наш метод является универсальным по отношению к параметру и константе Гёльдера. Это означает, что методу не нужно знание этих параметров для работы. При этом полученная оценка сложности является равномерно наилучшей при всех параметрах Гёльдера. Наконец, в частном случае показано, что малое значение нормы обобщенного градиентного отображения в точке означает, что в этой точке приближенно выполняется необходимое условие локального минимума.

  5. Кубасова Н.А., Цатурян А.К.
    Молекулярно-динамическая оценка механических свойств фибриллярного актина
    Компьютерные исследования и моделирование, 2022, т. 14, № 5, с. 1081-1092

    Актин — консервативный структурный белок, который экспрессируется в клетках всех эукариот. При полимеризации он образует длинные нити фибриллярного актина, или F-актина, которые участвуют в формировании цитоскелета, в мышечном сокращении и его регуляции, а также во многих других процессах. Динамические и механические свойства актина важны для взаимодействия с другими белками и реализации его многочисленных функций в клетке. Мы провели молекулярно-динамические (МД) расчеты сегмента актиновой нити, состоящего из 24 мономеров, в отсутствие и в присутствии MgADP, с явным учетом растворителя и при физиологи- ческой ионной силе при 300 К длительностью 204,8 нс в силовых полях AMBER99SB-ILDN и CHARMM36 в программной среде GROMACS, используя в качестве исходной структуры современные структурные модели, полученные методом криоэлектронной микроскопии высокого разрешения. МД-расчеты показали, что стационарный режим флуктуаций структуры длинного сегмента F-актина вырабатывается через 80–100 нс после начала МД-траектории. По результатам МД-расчетов оценили основные параметры спирали актина и ее изгибную, продольную и торсионную жесткости, используя участок расчетной модели, достаточно далеко отстоящий от ее концов. Оцененные значения шага (2,72–2,75 нм) и угла (165–168) спирали F-актина, его изгибной (2,8–4,7 · 10−26 Н · м2), продольной (36–47 · 10−9 Н) и торсионной (2,6–3,1 · 10−26 Н · м2) жесткости хорошо согласуются с результатами наиболее надежных экспериментов. Результаты МД-расчетов показали, что современные структурные модели F-актина позволяют достаточно аккуратно описать его динамику и механические свойства при условии использования расчет- ных моделей, содержащих достаточно большое количество мономеров, современных силовых полей и относительно длинных МД-траекторий. Включение в МД-модели белков-партнеров актина, в частности тропомиозина и тропонина, может помочь понять молекулярные механизмы таких важных процессов, как регуляция мышечного сокращения.

  6. Руденко В.Д., Юдин Н.Е., Васин А.А.
    Обзор выпуклой оптимизации марковских процессов принятия решений
    Компьютерные исследования и моделирование, 2023, т. 15, № 2, с. 329-353

    В данной статье проведен обзор как исторических достижений, так и современных результатов в области марковских процессов принятия решений (Markov Decision Process, MDP) и выпуклой оптимизации. Данный обзор является первой попыткой освещения на русском языке области обучения с подкреплением в контексте выпуклой оптимизации. Рассматриваются фундаментальное уравнение Беллмана и построенные на его основе критерии оптимальности политики — стратегии, принимающие решение по известному состоянию среды на данный момент. Также рассмотрены основные итеративные алгоритмы оптимизации политики, построенные на решении уравнений Беллмана. Важным разделом данной статьи стало рассмотрение альтернативы к подходу $Q$-обучения — метода прямой максимизации средней награды агента для избранной стратегии от взаимодействия со средой. Таким образом, решение данной задачи выпуклой оптимизации представимо в виде задачи линейного программирования. В работе демонстрируется, как аппарат выпуклой оптимизации применяется для решения задачи обучения с подкреплением (Reinforcement Learning, RL). В частности, показано, как понятие сильной двойственности позволяет естественно модифицировать постановку задачи RL, показывая эквивалентность между максимизацией награды агента и поиском его оптимальной стратегии. В работе также рассматривается вопрос сложности оптимизации MDP относительно количества троек «состояние–действие–награда», получаемых в результате взаимодействия со средой. Представлены оптимальные границы сложности решения MDP в случае эргодического процесса с бесконечным горизонтом, а также в случае нестационарного процесса с конечным горизонтом, который можно перезапускать несколько раз подряд или сразу запускать параллельно в нескольких потоках. Также в обзоре рассмотрены последние результаты по уменьшению зазора нижней и верхней оценки сложности оптимизации MDP с усредненным вознаграждением (Averaged MDP, AMDP). В заключение рассматриваются вещественнозначная параметризация политики агента и класс градиентных методов оптимизации через максимизацию $Q$-функции ценности. В частности, представлен специальный класс MDP с ограничениями на ценность политики (Constrained Markov Decision Process, CMDP), для которых предложен общий прямодвойственный подход к оптимизации, обладающий сильной двойственностью.

  7. Цхай А.А., Романов М.А., Куприянов В.А.
    Модель ассимиляционного потенциала озерной экосистемы на примере биогенных загрязнений
    Компьютерные исследования и моделирование, 2024, т. 16, № 6, с. 1447-1465

    Разработана модель биогеохимических циклов трансформации питательных веществ в экосистеме водоема на примере Телецкого озера (ТО) для оценки его ассимиляционного потенциала в условиях отсутствия прямых измерений концентраций общего азота и фосфора, вместо чего для предварительных выводов используются соответствующие расчетные данные, полученные при моделировании. Правомерность такого способа обосновывается проверкой адекватности результатов моделирования данным среднемесячных многолетних наблюдений для всех переменных состояния модели в воде изучаемого обьекта. Рассмотрены наиболее существенные особенности моделирования круговорота соединений биогенных элементов (N и P) и динамики растворенного кислорода в экосистеме ТО. Выполнена калибровка модели с учетом данных многолетних наблюдений за качеством воды 1985–2003 гг., а также сценарного варианта гидрологического режима 2016 г. Приводится анализ внутригодовой изменчивости переменных состояния, азотных и фосфорных поступлений и потерь в воде ТО. Рассчитана предварительная величина допустимой нагрузки N и P на озеро. Модельный анализ показал, что у озера практически отсутствует ассимиляционный потенциал по отношению к соединениям фосфора. Значения среднегодовых концентраций, соответствующие случаю допустимой биогенной нагрузки, равны Pобщ. = 0,013 гР/м3, что равно среднегодовой концентрации за 18-летний период наблюдений, пороговое содержание Nобщ. = 0,895 гN/м3. Ассимиляционный потенциал по азоту небольшой, в пределах второй значащей цифры после запятой, имеется в виду, что его расчетная среднегодовая величина составляет 0,836 гN/м3. Результаты модельных расчетов свидетельствуют о том, что воды ТО из-за низкой температуры воды в течение всего года наряду с уникальной чистотой отличаются крайне слабо развитым сообществом гидробионтов. В случае других озер повышение антропогенного пресса могло бы сглаживаться за счет утилизации вследствие жизнедеятельности достаточно развитых сообществ гидробионтов. Здесь же достаточного ресурса самоочищения нет, и сравнительно небольшое повышение антропогенного загрязнения может привести к нарушению устойчивости в экосистеме ТО.

  8. Адамовский Е.Р., Богуш Р.П., Наумович Н.М.
    Прогнозирование занятости частотного ресурса в системе когнитивного радио с использованием нейронной сети Колмогорова – Арнольда
    Компьютерные исследования и моделирование, 2025, т. 17, № 1, с. 109-123

    Для систем когнитивного радио актуальным является использование эффективных алгоритмов поиска свободных каналов, которые могут быть предоставлены вторичным пользователям. Поэтому данная статья посвящена повышению точности прогнозирования занятости частотного ресурса системы сотовой связи с использованием пространственно-временных карт радиосреды. Формирование карты радиосреды осуществляется для системы сотовой связи четвертого поколения Long-Term Evolution. С учетом этого разработана структура модели, включающая генерацию данных и позволяющая выполнять обучение и тестирование искусственной нейронной сети для прогнозирования занятости частотных ресурсов, представленных в виде содержимого ячеек карты радиосреды. Описана методика оценки точности прогнозирования. Имитационная модель системы сотовой связи реализована в программной среде MatLab. Разработанная модель прогнозирования занятости частотного ресурса реализована на языке программирования Python. Представлена полная файловая структура модели. Эксперименты выполнены с использованием искусственных нейронных сетей на основе архитектур нейронных сетей Long Short-Term Memory и Колмогорова – Арнольда с учетом ее модификации. Установлено, что при равном количестве параметров нейронная сеть Колмогорова – Арнольда обучается быстрее для данной задачи. Полученные результаты исследований свидетельствуют о повышении точности прогнозирования занятости частотного ресурса системы сотовой связи при использовании нейронной сети Колмогорова – Арнольда.

  9. Кистенев Ю.В., Никифорова О.Ю., Стромов Г.Г., Фокин В.В.
    Оптимизация интегральных оценок состояния биосистем с использованием параллельных вычислений
    Компьютерные исследования и моделирование, 2011, т. 3, № 1, с. 93-99

    В работе рассмотрен подход к оптимизации интегральных оценок состояния биосистем. Подход включает процедуры уменьшения вариабельности интегральных оценок, основанные на статистическом моделировании экспериментальных данных, а также оптимизацию числа признаков состояния на основе оценки их относительного вклада в интегральную оценку c использованием параллельных вычислений.

    Цитирований: 3 (РИНЦ).
  10. Кондратьев М.А.
    Методы прогнозирования и модели распространения заболеваний
    Компьютерные исследования и моделирование, 2013, т. 5, № 5, с. 863-882

    Число работ, посвященных прогнозированию инфекционной заболеваемости, стремительно растет по мере появления статистики, позволяющей провести анализ. В настоящей статье представлен обзор основных решений, доступных сегодня для формирования как краткосрочных, так и долгосрочных проекций заболеваемости; указаны их ограничения и возможности практического применения. Рассмотрены традиционные методы анализа временных рядов — регрессионные и авторегрессионные модели; подходы, опирающиеся на машинное обучение — байесовские сети и искусственные нейронные сети; рассуждения на основе прецедентов; техники, базирующиеся на решении задачи фильтрации. Перечислены важнейшие направления разработки математических моделей распространения заболевания: классические аналитические модели, детерминированные и стохастические, а также современные имитационные модели, сетевые и агентные.

    Просмотров за год: 71. Цитирований: 19 (РИНЦ).
Страницы: « первая предыдущая следующая последняя »

Журнал индексируется в Scopus

Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"

Международная Междисциплинарная Конференция МАТЕМАТИКА. КОМПЬЮТЕР. ОБРАЗОВАНИЕ.