Текущий выпуск Номер 2, 2025 Том 17

Все выпуски

Результаты поиска по 'ассимиляция':
Найдено статей: 3
  1. От редакции
    Компьютерные исследования и моделирование, 2018, т. 10, № 3, с. 279-283
    Просмотров за год: 18.
  2. Веренцов С.И., Магеррамов Э.А., Виноградов В.А., Гизатуллин Р.И., Алексеенко А.Е., Холодов Я.А.
    Байесовская вероятностная локализация автономного транспортного средства путем ассимиляции сенсорных данных и информации о дорожных знаках
    Компьютерные исследования и моделирование, 2018, т. 10, № 3, с. 295-303

    Локализация транспортного средства является важной задачей в области интеллектуальных транспортных систем. Хорошо известно, что слияние показаний с разных датчиков (англ. Sensor Fusion) позволяет создавать более робастные и точные навигационные системы для автономных транспортных средств. Стандартные подходы, такие как расширенный фильтр Калмана или многочастичный фильтр, либо неэффективны при работе с сильно нелинейными данными, либо потребляют значительные вычислительные ресурсы, что осложняет их использование во встроенных системах. При этом точность сливаемых сенсоров может сильно различаться. Значительный прирост точности, особенно в ситуации, когда GPS (англ. Global Positioning System) не доступен, может дать использование ориентиров, положение которых заранее известно, — таких как дорожные знаки, светофоры, или признаки SLAM (англ. Simultaneous Localization and Mapping). Однако такой подход может быть неприменим в случае, если априорные локации неизвестны или неточны. Мы предлагаем новый подход для уточнения координат транспортного средства с использованием визуальных ориентиров, таких как дорожные знаки. Наша система представляет собой байесовский фреймворк, уточняющий позицию автомобиля с использованием внешних данных о прошлых наблюдениях дорожных знаков, собранных методом краудсорсинга (англ. Crowdsourcing — сбор данных широким кругом лиц). Данная статья представляет также подход к комбинированию траекторий, полученных с помощью глобальных GPS-координат и локальных координат, полученных с помощью акселерометра и гироскопа (англ. Inertial Measurement Unit, IMU), для создания траектории движения транспортного средства в неизвестной среде. Дополнительно мы собрали новый набор данных, включающий в себя 4 проезда на автомобиле в городской среде по одному маршруту, при которых записывались данные GPS и IMU смартфона, видеопоток с камеры, установленной на лобовом стекле, а также высокоточные данные о положении с использованием специализированного устройства Real Time Kinematic Global Navigation Satellite System (RTK-GNSS), которые могут быть использованы для валидации. Помимо этого, с использованием той же системы RTK-GNSS были записаны точные координаты знаков, присутствующих на маршруте. Результаты экспериментов показывают, что байесовский подход позволяет корректировать траекторию движения транспортного средства и дает более точные оценки при увеличении количества известной заранее информации. Предложенный метод эффективен и требует для своей работы, кроме показаний GPS/IMU, только информацию о положении автомобилей в моменты прошлых наблюдений дорожных знаков.

    Просмотров за год: 22.
  3. Цхай А.А., Романов М.А., Куприянов В.А.
    Модель ассимиляционного потенциала озерной экосистемы на примере биогенных загрязнений
    Компьютерные исследования и моделирование, 2024, т. 16, № 6, с. 1447-1465

    Разработана модель биогеохимических циклов трансформации питательных веществ в экосистеме водоема на примере Телецкого озера (ТО) для оценки его ассимиляционного потенциала в условиях отсутствия прямых измерений концентраций общего азота и фосфора, вместо чего для предварительных выводов используются соответствующие расчетные данные, полученные при моделировании. Правомерность такого способа обосновывается проверкой адекватности результатов моделирования данным среднемесячных многолетних наблюдений для всех переменных состояния модели в воде изучаемого обьекта. Рассмотрены наиболее существенные особенности моделирования круговорота соединений биогенных элементов (N и P) и динамики растворенного кислорода в экосистеме ТО. Выполнена калибровка модели с учетом данных многолетних наблюдений за качеством воды 1985–2003 гг., а также сценарного варианта гидрологического режима 2016 г. Приводится анализ внутригодовой изменчивости переменных состояния, азотных и фосфорных поступлений и потерь в воде ТО. Рассчитана предварительная величина допустимой нагрузки N и P на озеро. Модельный анализ показал, что у озера практически отсутствует ассимиляционный потенциал по отношению к соединениям фосфора. Значения среднегодовых концентраций, соответствующие случаю допустимой биогенной нагрузки, равны Pобщ. = 0,013 гР/м3, что равно среднегодовой концентрации за 18-летний период наблюдений, пороговое содержание Nобщ. = 0,895 гN/м3. Ассимиляционный потенциал по азоту небольшой, в пределах второй значащей цифры после запятой, имеется в виду, что его расчетная среднегодовая величина составляет 0,836 гN/м3. Результаты модельных расчетов свидетельствуют о том, что воды ТО из-за низкой температуры воды в течение всего года наряду с уникальной чистотой отличаются крайне слабо развитым сообществом гидробионтов. В случае других озер повышение антропогенного пресса могло бы сглаживаться за счет утилизации вследствие жизнедеятельности достаточно развитых сообществ гидробионтов. Здесь же достаточного ресурса самоочищения нет, и сравнительно небольшое повышение антропогенного загрязнения может привести к нарушению устойчивости в экосистеме ТО.

Журнал индексируется в Scopus

Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"

Международная Междисциплинарная Конференция МАТЕМАТИКА. КОМПЬЮТЕР. ОБРАЗОВАНИЕ.