Все выпуски
- 2025 Том 17
- 2024 Том 16
- 2023 Том 15
- 2022 Том 14
- 2021 Том 13
- 2020 Том 12
- 2019 Том 11
- 2018 Том 10
- 2017 Том 9
- 2016 Том 8
- 2015 Том 7
- 2014 Том 6
- 2013 Том 5
- 2012 Том 4
- 2011 Том 3
- 2010 Том 2
- 2009 Том 1
-
Математическое моделирование гидродинамических процессов Азовского моря на многопроцессорной вычислительной системе
Компьютерные исследования и моделирование, 2024, т. 16, № 3, с. 647-672Статья посвящена моделированию гидродинамических процессов мелководных водоемов на примере Азовского моря. В статье приведена математическая модель гидродинамики мелководного водоема, позволяющая вычислить трехмерные поля вектора скорости движения водной среды. Применение регуляризаторов по Б.Н. Четверушкину в уравнении неразрывности привело к изменению способа расчета поля давления, базирующегося на решении волнового уравнения. Построена дискретная конечно-разностная схема для расчета давления в области, линейные размеры которой по вертикали существенно меньше размеров по горизонтальным координатным направлениям, что является характерным для геометрии мелководных водоемов. Описаны метод и алгоритм решения сеточных уравнений с предобуславливателем трехдиагонального вида. Предложенный метод применен для решения сеточных уравнений, возникающих при расчете давления для трехмерной задачи гидродинамики Азовского моря. Показано, что предложенный метод сходится быстрее модифицированного попеременно-треугольного метода. Представлена параллельная реализация предложенного метода решения сеточных уравнений и проведены теоретические и практические оценки ускорения алгоритма с учетом времени латентности вычислительной системы. Приведены результаты вычислительных экспериментов для решения задач гидродинамики Азовского моря с использованием гибридной технологии MPI + OpenMP. Разработанные модели и алгоритмы применялись для реконструкции произошедшей в 2001 году в Азовском море экологической катастрофы и решения задачи движения водной среды в устьевых районах. Численные эксперименты проводились на гибридном вычислительном кластере К-60 ИПМ им. М.В. Келдыша РАН.
-
Моделирование разделения смеси газов в многоступенчатом микронасосе, основанное на решении уравнения Больцмана
Компьютерные исследования и моделирование, 2024, т. 16, № 6, с. 1417-1432В работе проводятся моделирование смеси газов в многокаскадном микронасосе и оценка его эффективности при разделении компонентов смеси. Рассматривается устройство в виде протяженного канала с последовательностью поперечно расположенных пластин, различие температур сторон которых приводит к радиометрическому течению газа внутри. Скорость течения газов зависит от их масс, что приводит к разделению смеси. Моделирование основывается на численном решении кинетического уравнения Больцмана, для чего используется схема расщепления, при которой поочередно осуществляются решения уравнений переноса и задач релаксации. Вычисление интеграла столкновений осуществляется с помощью консервативного проекционного метода, при использовании которого строго выполняются законы сохранения массы, импульса и энергии, и важное асимптотическое свойство — равенство интеграла от максвелловской функции нулю. Для решения уравнения переноса используются явная разностная схема первого порядка точности и TVD-схема второго порядка. Расчеты проводятся для смеси неона и аргона в модели твердых сфер с реальным отношением молекулярных диаметров и масс. Разработана программно-моделирующая среда, которая позволяет проводить расчеты как на персональных компьютерах, так и на многопроцессорных кластерах. Использование распараллеливания приводит к ускорению вычислений относительно последовательной версии и постоянству времени одной итерации для устройств разных размеров, что позволило моделировать системы с большим числом пластин. Подобраны геометрические размеры устройства, при которых разделения смеси оказывается наибольшим. Обнаружено, что величина разделения смеси, то есть отношение концентраций на концах устройства линейно зависит от числа каскадов в устройстве, что дает возможность оценить разделение для многокаскадных систем, компьютерное моделирование которых невозможно. Построены изображения и проведен анализ течений и распределений концентраций газов внутри устройства во время его работы. Показано, что устройства такого вида при достаточно большом числе пластин подходят для разделения газовых смесей, притом что они не имеют движущихся частей и, соответственно, достаточно просты в изготовлении и мало подвержены износу.
-
Математическая модель для оценки зоны интенсивного испарения газового конденсата при выбросах на мелководных скважинах
Компьютерные исследования и моделирование, 2025, т. 17, № 2, с. 243-259Безопасное проведение аварийно-восстановительных работ на аварийных морских газоконденсатных скважинах возможно при учете опасных факторов, препятствующих проведению противофонтанных мероприятий. Одним из таких факторов является загазованность района работ вследствие выхода из водной толщи большого количества легкого, по сравнению с воздухом, природного газа, а также паров более тяжелых компонентов газового конденсата (ГК). Для оценки распределения взрывоопасных концентраций паров нефтепродукта в приводном слое атмосферы необходимо определить характеристики источника загазованности. На основании анализа теоретических работ, посвященных формированию поля скорости в верхнем слое моря вследствие выхода на поверхность большого количества газа, предложена аналитическая модель для расчета размеров области, в которой происходит испарение значительного количества поступающего на поверхность ГК при авариях на мелководных скважинах. Рассматривается стационарный режим истечения пластового продукта при открытом фонтанировании газонефтяных скважин морского базирования при подводном расположении их устья. Построена малопараметрическая модель испарения нефтепродуктов из пленок различной толщины. Показано, что размер зоны интенсивного испарения ГК при подводном выбросе на мелководных скважинах определяется объемным потоком жидкой фракции ГК, его фракционным составом и выбранным порогом для оценки потока паров нефтепродукта в атмосферу. В контексте данной работы мелководными называются скважины при дебите газа от 1 до 20 млн м3 на глубинах порядка 50–200 метров. В этом случае струя пластового флюида из устья скважины на морском дне трансформируется в пузырьковый шлейф, типичная для летне-осеннего периода стратификация водной толщи не ограничивает выход шлейфа на поверхность моря, а скорость подъема пузырьков позволяет не принимать во внимание процесс растворения газа. Проведенный анализ был ограничен условиями близкими к штилевым. Такие условия благоприятны для проведения морских операций, однако неблагоприятны с точки зрения рассеяния высоких концентраций паров нефтепродуктов в приводном слое атмосферы над морем. В результате проведенной работы предложено аналитическое соотношение для приближенной оценки зоны интенсивного испарения ГК.
-
Моделирование формирований роботов, движущихся в водной среде
Компьютерные исследования и моделирование, 2025, т. 17, № 4, с. 601-620Групповое движение малоразмерных подводных аппаратов — важная прикладная задача. В работе приводятся результаты исследования влияния формации группы на характер ее движения. Оценка лобового сопротивления подводных аппаратов и обтекания потоков вокруг них — традиционная и хорошо известная область исследований. Однако выводы, сделанные для единичного робота, не всегда применимы к группе однотипных устройств из-за появляющихся при совместном движении физических эффектов, например волновой тени. Исходя из этого были исследованы гидродинамические характеристики определенных формаций роботов, движущихся как единое целое. В ходе работы изучались гидродинамические параметры систем с двумя основными типами движителей: локомоторными (аналогами рыбьих хвостов) и гребными винтами. Из соображений природоподобия рассматривались формации, аналогичные по структуре рыбьим косякам, затем оценивалась их применимость для роботов разных видов. Была определена связь между скоростью движения группировки и лобовым сопротивлением каждого из ее участников. Математическое моделирование обтекания группировки роботов проводилось при помощи метода конечных объемов двумя программными комплексами (FlowVision и OpenFoam). Показано, что роботы с винтовым движителем при размещении в тесных формациях мешают друг другу, а для локомоторного случая нахождение в зоне возмущения, наоборот, предпочтительно. Также при плохо обтекаемых корпусах отрывающиеся от поверхности потоки могут превращаться в узкие струи, сильно мешающие задним роботам. Установлено, что эффект водяной тени снижает затраты энергии только при малых скоростях движения — около 5 см/с; при больших скоростях движение в колоннах затрудняется для задних роботов. Кроме того, для рыбоподобного движителя не было выявлено большой разницы в лобовом сопротивлении между одиночным роботом и группой. Таким образом, программное моделирование позволило выработать и обосновать рекомендации по оптимизации построений роботов при групповом движении. Полученные результаты могут оказаться полезными для разработки подводных аппаратов, способных работать в группах, и средств управления ими.
Ключевые слова: групповая робототехника, подводная робототехника, FlowVision, OpenFoam, имитационное моделирование. -
Реализация клеточных автоматов «игра “Жизнь”» и клеточного автомата Кохомото-Ооно с применением технологии MPI
Компьютерные исследования и моделирование, 2010, т. 2, № 3, с. 319-322Просмотров за год: 11.Данная работа является анализом результатов, полученных участниками летней школы по высокопроизводительным вычислениям МФТИ-2010 во время практикума по технологии MPI. В качестве проекта была предложена трехмерная версия игры Конвея «Жизнь». Разобраны основные способы решения, используемые участниками при разработке, приведена их теоретическая и практическая оценка по масштабируемости.
-
Принцип инвариантности Ла-Салля и математические модели эволюции микробных популяций
Компьютерные исследования и моделирование, 2011, т. 3, № 2, с. 177-190Просмотров за год: 8. Цитирований: 3 (РИНЦ).Построена математическая модель эволюции микробных популяций при длительном непрерывном культивировании на протоке. Модель представляет собой обобщение целого ряда известных математических моделей эволюции, в которых учитываются такие факторы генетической изменчивости как хромосомные мутации, мутации плазмидных генов, перенос плазмид между клетками микроорганизмов, потери плазмид при делении клеток и др. Для общей модели эволюции построена функция Ляпунова и на основании теоремы Ла-Салля доказано существование в пространстве состояний математической модели ограниченного, положительно инвариантного и глобально притягивающего множества. Дано аналитическое описание этого множества. Обсуждаются перспективы применения численных методов для оценки числа, местоположения и последующего исследования предельных множеств в математических моделях эволюции на протоке.
-
Моделирование межслоевой магнитостатической энергии в нанокристаллических пленках
Компьютерные исследования и моделирование, 2012, т. 4, № 1, с. 85-90Просмотров за год: 3. Цитирований: 1 (РИНЦ).Предложена модель расчета межслоевой магнитостатической энергии и оценка ее вклада в общую магнитную энергию многослойных пленок. Данная модель была применена для расчета трехслойной структуры Co/Cu/Co. Сравнение полученных теоретических результатов с экспериментальными данными позволило оценить влияние магнитостатического взаимодействия на величину и характер поведения поля насыщения подобных структур.
-
Численное моделирование воздушного охлаждения емкости для десублимации компонентов газовой смеси
Компьютерные исследования и моделирование, 2016, т. 8, № 3, с. 521-529Просмотров за год: 3. Цитирований: 1 (РИНЦ).В химической технологии для получения очищенного конечного продукта часто используется процесс десублимации. Для этого используются охлаждаемые жидким азотом или холодным воздухом емкости. Смесь газов протекает внутри емкости и охлаждается до температуры конденсации или десублимации некоторых компонентов газовой смеси. Конденсированные компоненты оседают на стенках емкости. В статье представлена математическая модель для расчета охлаждения емкостей для десублимации паров охлажденным воздухом. Математическая модель основана на уравнениях газовой динамики и описывает течение охлажденного воздуха в трубопроводе и воздушном теплообменнике с учетом теплообмена и трения. Теплота фазового перехода учитывается в граничном условии для уравнения теплопроводности путем задания потока тепла. Перенос тепла в теплоизолированных стенках трубопровода и в стенках емкости описывается нестационарными уравнениями теплопроводности. Решение системы уравнений проводится численно. Уравнения газовой динамики решаются методом С. К. Годунова. Уравнения теплопроводности решаются по неявной разностной схеме. В статье приведены результаты расчетов охлаждения двух последовательно установленных емкостей. Начальная температура емкостей равна 298 К. Холодный воздух течет по трубопроводу, через теплообменник первой емкости, затем по трубопроводу в теплообменник второй емкости. За 20 минут емкости остывают до рабочей температуры. Температура стенок емкостей отличается от температуры воздуха на величину не более чем 1 градус. Поток охлажденного воздуха позволяет поддерживать изотермичность стенок емкости в процессе десублимации компонентов из газовой смеси. Приведены результаты аналитической оценки времени охлаждения емкости и разности температуры между стенками емкости и воздухом в режиме десублимации паров. Аналитическая оценка основана на определении времени термической релаксации температуры стенок емкости. Результаты аналитических оценок удовлетворительно совпадают с результатами расчетов по представленной модели. Предложенный подход позволяет проводить расчет охлаждения емкостей потоком холодного воздуха, подаваемого по трубопроводной системе.
-
Теоретико-игровая модель согласования интересов при инновационном развитии корпорации
Компьютерные исследования и моделирование, 2016, т. 8, № 4, с. 673-684Исследуются динамические теоретико-игровые модели инновационного развития корпорации. Предлагаемые модели основаны на согласовании частных и общественных интересов агентов. Предполагается, что структура интересов каждого агента включает как частную (личные интересы), так и общественную (интересы компании в целом, в первую очередь отражающие необходимость ее инновационного развития) составляющие. Агенты могут делить персональные ресурсы между этими направлениями. Динамика системы описывается не дифференциальным, а разностным уравнением. При исследовании предложенной модели инновационного развития используются имитация и метод перебора областей допустимых управлений субъектов с некоторым шагом. Основной вклад работы — сравнительный анализ эффективности методов иерархического управления для информационных регламентов Штакельберга/Гермейера при принуждении/побуждении (четыре регламента) с помощью индексов системной согласованности. Предлагаемая модель носит универсальный характер и может быть использована для научно обоснованной поддержки ПИР компаний всех отраслей экономики. Специфика конкретной компании учитывается в ходе идентификации модели (определения конкретных классов ис- пользуемых в модели функций и числовых значений параметров), которая представляет собой отдельную сложную задачу и предполагает анализ системы официальной отчетности компании и применение экспертных оценок ее специалистов. Приняты следующие предположения относительно информационного регламента иерархической игры: все игроки используют программные стратегии; ведущий выбирает и сообщает ведомым экономические управления либо административные управления, которые могут быть только функциями времени (игры Штакельберга) либо зависеть также от управлений ведомых (игры Гермейера); при известных стратегиях ведущего ведомые одновременно и независимо выбирают свои стратегии, что приводит к равновесию Нэша в игре ведомых. За конечное число итераций предложенный алгоритм имитационного моделирования позволяет построить приближенное решение модели или сделать вывод, что равновесия не существует. Достоверность и эффективность предложенного алгоритма следуют из свойств методов сценариев и прямого упорядоченного перебора с постоянным шагом. Получен ряд содержательных выводов относительно сравнительной эффективности методов иерархического управления инновациями.
Ключевые слова: игра Гермейера, игра Штакельберга, иерархия, имитационное моделирование, инновационное развитие, побуждение, принуждение.Просмотров за год: 9. Цитирований: 6 (РИНЦ). -
Оценка собственных частот колебаний чистого изгиба композиционных нелинейно-упругих балок и круглых пластин
Компьютерные исследования и моделирование, 2017, т. 9, № 6, с. 945-953В работе представлена методика линеаризации диаграммы растяжения-сжатия материала нелинейно деформируемых балки и круглой пластины с целью обобщения уравнений свободных колебаний чистого изгиба. В статье рассматриваются композиционные, в среднем изотропные призматические балки постоянного прямоугольного поперечного сечения и круглые пластины постоянной толщины из нелинейно-упругих компонент. Методика заключается в определении аппроксимирующего модуля Юнга материала исходя из начального напряженно-деформированного состояния балки и пластины, подверженных действию изгибающего момента.
В статье предлагается два критерия линеаризации: равенство удельной потенциальной энергии деформации, а также минимизация среднеквадратического отклонения при приближении нелинейного уравнения состояния линейной функцией. Данный метод позволяет в аналитическом виде получить оценочное значение частоты свободных колебаний слоистых и структурно-неоднородных в среднем изотропных нелинейно-упругих балок и пластин, что предоставляет возможность существенно сократить ресурсы при вибрационном анализе и моделировании указанных элементов конструкций. Кроме того, в работе показано, что предложенные критерии линеаризации позволяют производить оценку величины собственных частот с одинаковой точностью.
Поскольку в общем случае даже изотропные материалы проявляют разную сопротивляемость растяжению и сжатию, в качестве кривых деформирования компонент композиционного материала в работе впервые рассматриваются кусочно-линейные диаграммы Прандтля с различающимися пределами пропорциональности и касательными модулями Юнга при растяжении и сжатии. В качестве параметров диа- граммы деформирования слоистых материалов рассматриваются эффективные характеристики по Фойгту при гипотезе об однородности деформаций (для продольно-слоистой структуры материла), по Рейссу при гипотезе об однородности напряжений (для поперечно-слоистой балки и аксиально-слоистой пластины). Кроме того, для структурно-неоднородного в среднем изотропного материала приведены эффективные модули Юнга и пределы пропорциональности, полученные с помощью ранее предложенного авторами метода гомогенизации. В качестве примера приведен расчет собственных частот колебаний двухфазных балок в зависимости от концентраций компонент их материала.
Ключевые слова: композиционный материал, нелинейная упругость, чистый изгиб, колебания, гомогенизация.Просмотров за год: 14.
Журнал индексируется в Scopus
Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"





