Все выпуски
- 2025 Том 17
- 2024 Том 16
- 2023 Том 15
- 2022 Том 14
- 2021 Том 13
- 2020 Том 12
- 2019 Том 11
- 2018 Том 10
- 2017 Том 9
- 2016 Том 8
- 2015 Том 7
- 2014 Том 6
- 2013 Том 5
- 2012 Том 4
- 2011 Том 3
- 2010 Том 2
- 2009 Том 1
-
Метод поиска касательных в задаче быстродействия для колесного мобильного робота
Компьютерные исследования и моделирование, 2025, т. 17, № 3, с. 401-421Поиск оптимальной траектории движения является нетривиальной задачей, на решение которой направлено большое число исследований. Большинство этих исследований посвящено решению задачи в общем виде вне зависимости от модели движения объекта. В такой постановке поиск оптимальной траектории возможен только численными методами. Вместе с тем в некоторых случаях возможно нахождение оптимальной траектории в аналитическом виде. В данной статье рассмотрена задача быстродействия с фазовыми ограничениями для колесного мобильного робота, движущегося по горизонтальной плоскости. Математическая модель робота является кинематической. Фазовые ограничения соответствуют препятствиям на плоскости, заданным в виде непересекающихся кругов, которые требуется избегать при движении. Независимыми управляющими воздействиями являются скорости колес, которые ограничены по абсолютной величине. Такая постановка часто применяется в тех случаях, когда динамические переходные процессы несущественны, например при управлении медленно движущимися гусеничными или колесными устройствами, в которых приоритет отдается мощности двигателей, а не их скорости. В статье показывается, что оптимальная траектория движения из начальной точки в конечную в выбранной кинематической постановке представляет собой последовательность отрезков общих касательных к парам кругов и дуг окружностей этих кругов. Геометрически кратчайший путь между начальной и конечной точками также состоит из отрезков касательных и дуг окружностей, поэтому оптимальное по быстродействию движение соответствует одному из локальных минимумов при поиске кратчайшего пути. Предложен аналитический метод поиска оптимальной траектории движения, основанный на построении графа возможных траекторий, где ребрами являются прямолинейные отрезки и дуги, а вершинами — точки их соединений, и поиска кратчайшего (быстрейшего) пути на графе с помощью метода Дейкстры. Представлено обоснование метода. Приведены результаты численных экспериментов по нахождению оптимальной траектории.
-
Моделирование управления движением в вязкой жидкости тела с переменной геометрией масс
Компьютерные исследования и моделирование, 2011, т. 3, № 4, с. 371-381Просмотров за год: 2. Цитирований: 16 (РИНЦ).Дана постановка задачи управления движения тела в вязкой жидкости. Движение тела индуцируется перемещением внутренних материальных точек. На основе численного решения уравнений движения тела и гидродинамических уравнений получены аппроксимирующие зависимости для вязких сил. С применением аппроксимаций решается задача оптимального управления движением тела по заданной траектории с применением гибридного генетического алгоритма. Установлена возможность направленного движения тела под действием возвратно-поступательного движения внутренней точки. Оптимальное управление направлением движения осуществляется движением другой внутренней точки по круговой траектории с переменной скоростью.
-
Моделирование конвективно-радиационного теплопереноса в дифференциально обогреваемой вращающейся полости
Компьютерные исследования и моделирование, 2018, т. 10, № 2, с. 195-207Просмотров за год: 20.Проведено математическое моделирование нестационарных режимов естественной конвекции и поверхностного излучения в замкнутой вращающейся квадратной полости. Рассматриваемая область решения имела две противоположные изотермические стенки, поддерживаемые при постоянных низкой и высокой температурах, остальные стенки являлись адиабатическими. Стенки считались диффузно-серыми. Анализируемая полость вращалась с постоянной угловой скоростью относительно оси, проходящей через центр полости и ориентированной ортогонально области решения. Математическая модель, сформулированная в безразмерных преобразованных переменных «функция тока – завихренность скорости» на основе приближений Буссинеска и диатермичности рабочей среды, была реализована численно методом конечных разностей. Уравнения дисперсии завихренности и энергии решались на основе локально-одномерной схемы А. А. Самарского. Диффузионные слагаемые аппроксимировались центральными разностями, конвективные — с использованием монотонной аппроксимации А. А. Самарского. Разностные уравнения решались методом прогонки. Разностное уравнение Пуассона для функции тока решалось отдельно с применением метода последовательной верхней релаксации. Оптимальное значение параметра релаксации подбиралось на основе вычислительных экспериментов. Анализ радиационного теплообмена проведен с использованием метода сальдо в варианте Поляка. Разработанный вычислительный код был протестирован на множестве сеток, а также верифицирован путем сопоставления полученных результатов при решении модельной задачи с экспериментальными и численными данными других авторов.
Численные исследования нестационарных режимов естественной конвекции и поверхностного теплового излучения в замкнутой вращающейся полости проведены при следующих значениях безразмерных параметров: Ra = 103–106, Ta = 0–105, Pr = 0.7, ε = 0–0.9. Все распределения были получены для двадцатого полного оборота полости, когда наблюдается установление периодической картины течения и теплопереноса. В результате анализа установлено, что при малой угловой скорости вращения полости возможна интенсификация течения, а дальнейший рост скорости вращения приводит к ослаблению конвективного течения. Радиационное число Нуссельта незначительно изменяется при варьировании числа Тейлора.
-
Гипотеза об оптимальных оценках скорости сходимости численных методов выпуклой оптимизации высоких порядков
Компьютерные исследования и моделирование, 2018, т. 10, № 3, с. 305-314В данной работе приводятся нижние оценки скорости сходимости для класса численных методов выпуклой оптимизации первого порядка и выше, т. е. использующих градиент и старшие производные. Обсуждаются вопросы достижимости данных оценок. Приведенные в статье оценки замыкают известные на данный момент результаты в этой области. Отметим, что замыкание осуществляется без должного обоснования, поэтому в той общности, в которой данные оценки приведены в статье, их стоит понимать как гипотезу. Опишембо лее точно основной результат работы. Пожалуй, наиболее известнымм етодом второго порядка является метод Ньютона, использующий информацию о градиенте и матрице Гессе оптимизируемой функции. Однако даже для сильно выпуклых функций метод Ньютона сходится лишь локально. Глобальная сходимость метода Ньютона обеспечивается с помощью кубической регуляризации оптимизируемой на каждом шаге квадратичной модели функции [Nesterov, Polyak, 2006]. Сложность решения такой вспомогательной задачи сопоставима со сложностью итерации обычного метода Ньютона, т. е. эквивалентна по порядку сложности обращения матрицы Гессе оптимизируемой функции. В 2008 году Ю. Е. Нестеровымбыл предложен ускоренный вариант метода Ньютона с кубической регуляризацией [Nesterov, 2008]. В 2013 г. Monteiro – Svaiter сумели улучшить оценку глобальной сходимости ускоренного метода с кубической регуляризацией [Monteiro, Svaiter, 2013]. В 2017 году Arjevani – Shamir – Shiff показали, что оценка Monteiro – Svaiter оптимальна (не может быть улучшена более чем на логарифми- ческий множитель на классе методов 2-го порядка) [Arjevani et al., 2017]. Также удалось получить вид нижних оценок для методов порядка $p ≥ 2$ для задач выпуклой оптимизации. Отметим, что при этом для сильно выпуклых функций нижние оценки были получены только для методов первого и второго порядка. В 2018 году Ю. Е. Нестеров для выпуклых задач оптимизации предложил методы 3-го порядка, которые имеют сложность итерации сопоставимую со сложностью итерации метода Ньютона и сходятся почти по установленным нижним оценкам [Nesterov, 2018]. Таким образом, было показано, что методы высокого порядка вполне могут быть практичными. В данной работе приводятся нижние оценки для методов высокого порядка $p ≥ 3$ для сильно выпуклых задач безусловной оптимизации. Работа также может рассматриваться как небольшой обзор современного состояния развития численных методов выпуклой оптимизации высокого порядка.
Ключевые слова: метод Ньютона, матрица Гессе, нижние оценки, чебышёвские методы, сверхлинейная сходимость.Просмотров за год: 21. Цитирований: 1 (РИНЦ). -
Метод зеркального спуска для условных задач оптимизации с большими значениями норм субградиентов функциональных ограничений
Компьютерные исследования и моделирование, 2020, т. 12, № 2, с. 301-317В работе рассмотрена задача минимизации выпуклого и, вообще говоря, негладкого функционала $f$ при наличии липшицевого неположительного выпуклого негладкого функционального ограничения $g$. При этом обоснованы оценки скорости сходимости методов адаптивного зеркального спуска также и для случая квазивыпуклого целевого функционала в случае выпуклого функционального ограничения. Предложен также метод и для задачи минимизации квазивыпуклого целевого функционала с квазивыпуклым неположительным функционалом ограничения. В работе предложен специальный подход к выбору шагов и количества итераций в алгоритме зеркального спуска для рассматриваемого класса задач. В случае когда значения норм (суб)градиентов функциональных ограничений достаточно велики, предложенный подход к выбору шагов и остановке метода может ускорить работу метода по сравнению с его аналогами. В работе приведены численные эксперименты, демонстрирующие преимущества использования таких методов. Также показано, что методы применимы к целевым функционалам различных уровней гладкости. В частности, рассмотрен класс гёльдеровых целевых функционалов. На базе техники рестартов для рассмотренного варианта метода зеркального спуска был предложен оптимальный метод решения задач оптимизации с сильно выпуклыми целевыми функционалами. Получены оценки скорости сходимости рассмотренных алгоритмов для выделенных классов оптимизационных задач. Доказанные оценки демонстрируют оптимальность рассматриваемых методов с точки зрения теории нижних оракульных оценок.
-
Калибровка параметров модели расчета матрицы корреспонденций для г. Москвы
Компьютерные исследования и моделирование, 2020, т. 12, № 5, с. 961-978В данной работе рассматривается задача восстановления матрицы корреспонденций для наблюдений реальных корреспонденций в г. Москве. Следуя общепринятому подходу [Гасников и др., 2013], транспортная сеть рассматривается как ориентированный граф, дуги которого соответствуют участкам дороги, а вершины графа — районы, из которых выезжают / в которые въезжают участники движения. Число жителей города считается постоянным. Задача восстановления матрицы корреспонденций состоит в расчете всех корреспонденций израйона $i$ в район $j$.
Для восстановления матрицы предлагается использовать один из наиболее популярных в урбанистике способов расчета матрицы корреспонценций — энтропийная модель. В работе, в соответствии с работой [Вильсон, 1978], приводится описание эволюционного обоснования энтропийной модели, описывается основная идея перехода к решению задачи энтропийно-линейного программирования (ЭЛП) при расчете матрицы корреспонденций. Для решения полученной задачи ЭЛП предлагается перейти к двойственной задаче и решать задачу относительно двойственных переменных. В работе описывается несколько численных методов оптимизации для решения данной задачи: алгоритм Синхорна и ускоренный алгоритм Синхорна. Далее приводятся численные эксперименты для следующих вариантов функций затрат: линейная функция затрат и сумма степенной и логарифмической функции затрат. В данных функциях затраты представляют из себя некоторую комбинацию среднего времени в пути и расстояния между районами, которая зависит от параметров. Для каждого набора параметров функции затрат рассчитывается матрица корреспонденций и далее оценивается качество восстановленной матрицы относительно известной матрицы корреспонденций. Мы предполагаем, что шум в восстановленной матрице корреспонденций является гауссовским, в результате в качестве метрики качества выступает среднеквадратичное отклонение. Данная задача представляет из себя задачу невыпуклой оптимизации. В статье приводится обзор безградиенных методов оптимизации для решения невыпуклых задач. Так как число параметров функции затрат небольшое, для определения оптимальных параметров функции затрат было выбрано использовать метод перебора по сетке значений. Таким образом, для каждого набора параметров рассчитывается матрица корреспонденций и далее оценивается качество восстановленной матрицы относительно известной матрицы корреспонденций. Далее по минимальному значению невязки для каждой функции затрат определяется, для какой функции затрат и при каких значениях параметров восстановленная матрица наилучшим образом описывает реальные корреспонденции.
-
Сравнение результатов применения различных эволюционных алгоритмов для решения задачи оптимизации маршрута беспилотных аппаратов
Компьютерные исследования и моделирование, 2022, т. 14, № 1, с. 45-62В данной работе проводится сравнительный анализ точного и эвристических алгоритмов, представленных методом ветвей и границ, генетическим и муравьиным алгоритмами соответственно, для поиска оптимального решения задачи коммивояжера на примере робота-курьера. Целью работы является определение времени работы, длины полученного маршрута и объема памяти, необходимого для работы программы, при использовании метода ветвей и границ и эволюционных эвристических алгоритмов. Также определяется наиболее целесообразный из перечисленных методов для применения в заданных условиях. В настоящей статье используются материалы проведенного исследования, реализованного в формате программы для ЭВМ, программный код для которой реализован на языке Python. В ходе исследования был выбран ряд критериев применимости алгоритмов (время работы программы, длина построенного маршрута и объем необходимой для работы программы памяти), получены результаты работы алгоритмов в заданных условиях и сделаны выводы о степени целесообразности применения того или иного алгоритма в различных заданных условиях работы робота-курьера. В ходе исследования выяснилось, что для малого количества точек ($\leqslant10$) метод ветвей и границ является наиболее предпочтительным, так как находит оптимальное решение быстрее. Однако при вычислении маршрута этим методом, при условии увеличения точек более 10, время работы растет экспоненциально. В таком случае более эффективные результаты дает эвристический подход с использованием генетического и муравьиного алгоритмов. При этом муравьиный алгоритм отличается решениями, наиболее близкими к эталонным, при увеличении точек более 16. Относительным недостатком его является наибольшая ресурсоемкость среди рассматриваемых алгоритмов. Генетический алгоритм дает схожие результаты, но при увеличении точек более 16 растет длина найденного маршрута относительно эталонного. Преимущество генетического алгоритма — его меньшая ресурсоемкость по сравнению с другими алгоритмами.
Практическая значимость данной статьи заключается в потенциальной возможности использования полученных результатов для оптимального решения логистических задач автоматизированной системой в различных сферах: складская логистика, транспортная логистика, логистика «последней мили» и т. д.
-
Исследование традиционных и ИИ-моделей в задаче подавления интермодуляционных продуктов второго порядка
Компьютерные исследования и моделирование, 2024, т. 16, № 7, с. 1569-1578В данной работе рассматриваются нейросетевые модели и полиномиальные модели на основе полинома Чебышёва для компенсации помех. Показано, что нейросетевая модель обеспечивает компенсацию паразитных помех без необходимости настройки параметров, в отличие от полиномиальной модели, где требуется подбор оптимальных задержек. Для обеих архитектур использован метод L-BFGS, который достигает уровня компенсации, сопоставимого с решением LS для полиномиальной модели, с результатом NMSE = −23,59 дБ и требует менее 2000 итераций, что подтверждает его высокую эффективность. Также благодаря высокой обобщающей способности нейросетевых моделей метод первого порядка для нейросетевых архитектур демонстрирует более быструю сходимость по сравнению с полиномиальной моделью. За 20 000 итераций нейросетевая модель достигает прироста уровня компенсации на 0,44 дБ по сравнению с полиномом. В отличие от этого полиномиальная модель может достичь высокого уровня компенсации только при оптимальной настройке параметров методов первого порядка, что подчеркивает одно из ключевых преимуществ нейросетевых моделей.
-
Математические модели и методы организации вычислений в мультипроцессорных системах
Компьютерные исследования и моделирование, 2025, т. 17, № 3, с. 423-436В работе предложена и исследована математическая модель распределенной вычислительной системы параллельных взаимодействующих процессов, конкурирующих за использование ограниченного числа копий структурированного программного ресурса. В случаях неограниченного и ограниченного параллелизма по числу процессоров мультипроцессорной системы решены задачи определения оперативных и точных значений времени выполнения неоднородных и одинаково распределенных конкурирующих процессов в синхронном режиме, при котором обеспечивается линейный порядок выполнения блоков структурированного программного ресурса внутри каждого из процессов без задержек. Полученные результаты можно использовать при сравнительном анализе математических соотношений для вычисления времени реализации множества параллельных распределенных взаимодействующих конкурирующих процессов, математическом исследовании эффективности и оптимальности организации распределенных вычислений, решении задач построения оптимальной компоновки блоков одинаково распределенной системы, нахождения оптимального числа процессоров, обеспечивающих директивное время выполнения заданных объемов вычислений. Предложенные модели и методы открывают новые перспективы при решении проблем оптимального распределения ограниченных вычислительных ресурсов, синхронизации множества взаимодействующих конкурирующих процессов, минимизации системных затрат при выполнении параллельных распределенных процессов.
-
Количественные оценки сейсмического риска и энергетические концепции сейсмостойкого строительства
Компьютерные исследования и моделирование, 2018, т. 10, № 1, с. 61-76В настоящее время сейсмостойкое проектирование зданий основано на силовом расчете и представлении эффекта землетрясения статическими эквивалентными силами, которые рассчитываются с использованием упругих спектров реакций (линейно-спектральный метод), связывающих закон движения грунта с абсолютным ускорением модели в виде нелинейного осциллятора.
Такой подход непосредственно не учитывает ни влияния длительности сильных движений, ни пластического поведения конструкции. Частотный состав и продолжительность колебаний грунта напрямую влияют на энергию, поступившую в сооружение и вызывающую повреждение его элементов. В отличие от силового или кинематического расчета сейсмическое воздействие на конструкцию можно интерпретировать, не рассматривая отдельно силы или перемещения, а представить как произведение обеих величин, т. е. работу или входную энергию (максимальную энергию, которую может приобрести сооружение в результате землетрясения).
При энергетическом подходе сейсмического проектирования необходимо оценить входную сейсмическую энергию в сооружение и ее распределение среди различных структурных компонентов.
В статье приводится обоснование энергетического подхода при проектировании сейсмостойких зданий и сооружений взамен применяемого в настоящее время метода, основанного на силовом расчете и представлении эффекта землетрясения статическими эквивалентными силами, которые рассчитываются с использованием спектров реакции.
Отмечено, что интерес к использованию энергетических концепций в сейсмостойком проектировании начался с работ Хаузнера, который представил сейсмические силы в виде входной сейсмической энергии, используя спектр скоростей, и предложил считать, что повреждения в упругопластической системе, как и в упругой системе, вызывает одна и та же входная сейсмическая энергия.
В работе приведены индексы определения входной энергии землетрясения, предложенные различными авторами. Показано, что современные подходы обеспечения сейсмостойкости сооружений, основанные на представлении эффекта землетрясения как статической эквивалентной силы, недостаточно адекватно описывают поведение системы во время землетрясения.
В статье предлагается новый подход количественных оценок сейсмического риска, позволяющий формализовать процесс принятия решений относительно антисейсмических мероприятий. На основе количественных оценок сейсмического риска анализируется разработанный в НИУ МГСУ Стандарт организации (СТО) «Сейсмостойкость сооружений. Основные расчетные положения». В разработанном документе сделан шаг вперед в отношении оптимального проектирования сейсмостойких конструкций.
В предлагаемой концепции используются достижения современных методов расчета зданий и сооружений на сейсмические воздействия, которые гармонизированы с Еврокодом и не противоречат системе отечественных нормативных документов.
Ключевые слова: сейсмостойкость сооружений, энергетический метод, сейсмостойкое строительство, спектры реакции, входная энергия землетрясения, период повторяемости землетрясений, сейсмический риск, антисейсмические мероприятия, концептуальное проектирование, двухуровневый расчет, критерии сейсмостойкости, нелинейный статический и нелинейный динамический метод расчета.Просмотров за год: 21.
Журнал индексируется в Scopus
Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"